VHPB Technical meeting

The impact of viral hepatitis treatment, vaccination non-responders & occult hepatitis on public health

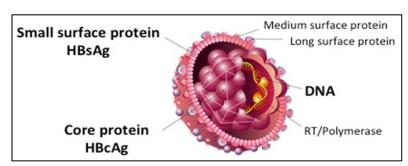
Vilnius, Lithuania 25-26 April 2019

Residual risk of Hepatitis B virus transfusion-transmission:

need for reappraisal of blood safety measures?

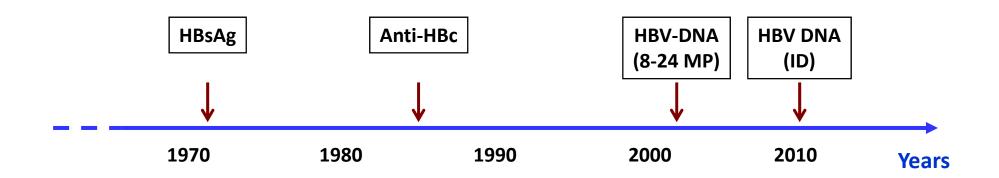
D Candotti

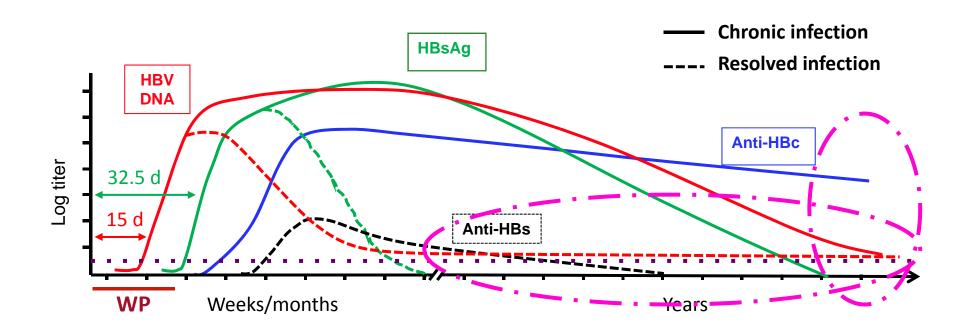
NATIONAL INSTITUTE OF BLOOD TRANSFUSION


Dept. Bloodborne Pathogens

Transfusion Infectious Risk National Reference Center

Paris, France


Hepatitis B virus in transfusion


- Transmission with infected blood or blood products
- Continuous and significant reduction of HBV transfusiontransmission risk over the past decades
- Implementation of safety measures:
 - Donor selection --> evaluation of behavior risks
 - Serological screening --> HBsAg and anti-HBc Ab
 - Molecular screening --> HBV DNA
 - Pathogen reduction procedures

 Hepatitis B remains the most frequent transfusion-transmitted viral infection

HBV screening in blood donors

Residual risk of HBV transfusion-transmission

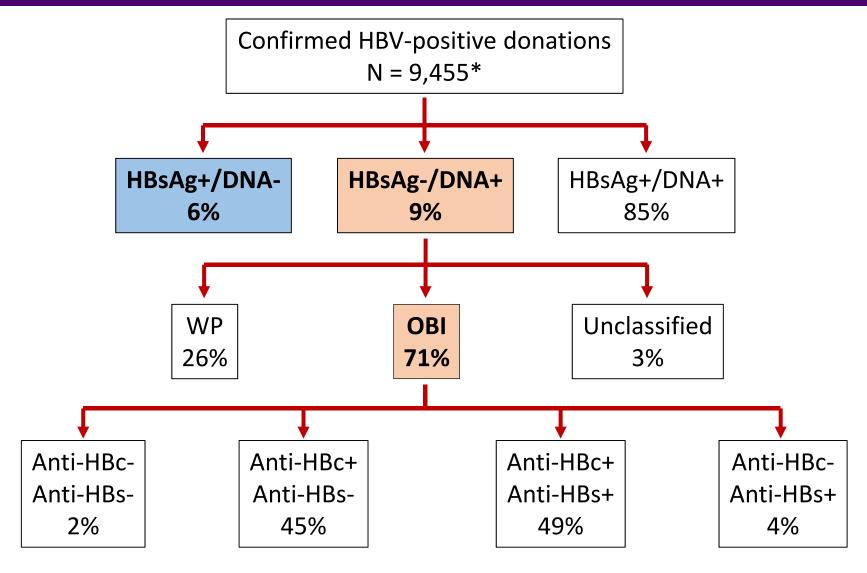
Residual risk depends on several factors

- HBV epidemiology
- Donor populations
- Screening strategies

Estimation of residual risk

- Low endemic settings: <1-1.4 per million donations

- High endemic settings: 16 - 100 per million donations


Limits

- Mathematical models used
- Lack of recent and liable HBV epidemiology data in blood donors

Risk mainly related to failure of serological and/or molecular screening


- Pre-seroconversion window period (acute infection)
- Late chronic infection --> occult HBV infection (OBI)

HBV markers in infected blood donors

^{*} Donors from South Africa (n=3,416), the Mediterranean region (n=1,608), Central & Northern Europe (n=503), South East Asia (n=3,754), and Oceania (n=174); ID-NAT screening with Procleix Ultrio (Grifols) and HBsAg with Abbott PRISM or ARCHITECT assays. Data from Lelie et al. Transfusion 2017.

HBV DNA load distribution in 191 OBI donors

OBI vs NAT non-repeatable reactive donations

- Definition according to assay used and users testing algorithm
- NRR rates of 0.09% 0.29% for Ultrio, Ultrio Plus, and Cobas MP-6

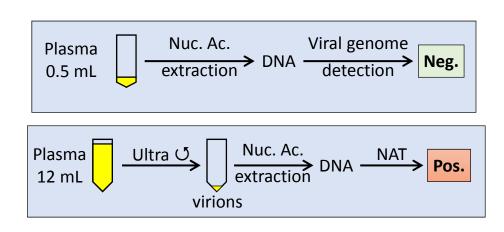
(Candotti & Allain. Blood Transfus 2012; Deng et al. Unpublished)

NRR NAT testing frequently associated with seronegative donations

NRR rates in	NRR rates in seronegative/NAT IR Chinese blood donors						
Screening	NAT yield	dHBV	dHCV	dHIV	NRR		
assays	IR	R	R	R			
Ultrio	224	58 (26%)	1 (0.4%)	1 (0.4%)	164 (73.2%)		
Ultrio Plus	1,224	389 (32%)	0	1 (0.08%)	834 (68%)		
	L. Wang, personal communication						

Confirmation of OBI/NRR NAT donors

- Follow-up to monitor seroconversion and exclude acute infection
- Re-testing from initial plasma bag to resolve sample cross-contamination
- Re-testing with different NAT assays
 - Different analytical sensitivity between assays

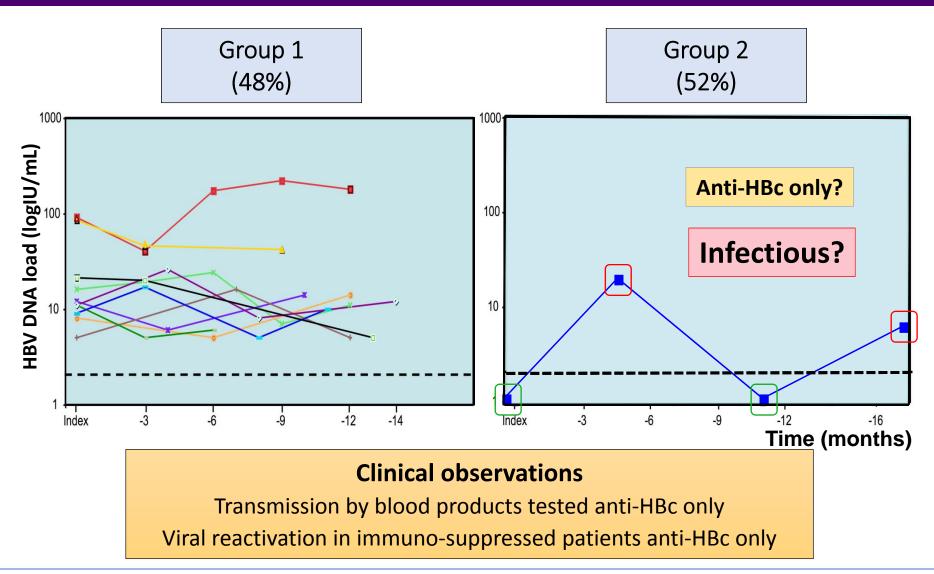

	Commercial HBV NAT assay reactivity of 52 anti-HBc reactive donors				
_	MPX	Ultrio Plus	Ultrio	SuperQuant	
	34 (65%)	26 (50%)	5 (9.6%)	7 (13.5%)	
_			Enjal	bert <i>et al.</i> Transfusion 2014;54:2485-95.	

- Multiple repeats of the screening and/or discriminatory test
 - Poisson distribution principle but how many repeats?
 i.e. HBV reactive in 3/23 tests (Candotti *et al.* Gut 2018)
 - Costly & Time consuming
 - Large volume of sample

Increasing HBV DNA detection sensitivity

- Developing highly sensitive alternative in-house real-time qPCR and nested PCR assays
 - Increased amplification efficiency of short regions
 - Sequencing of amplified products --> definitive confirmation
- Increasing the volume of plasma extracted (0.2 mL --> 5 mL)
- Concentrating viral particles from large volume of plasma (10-20 mL)
 - Immuno or chemical (i.e. heparin) capture
 - Precipitation with PEG
 - Ultracentrifugation

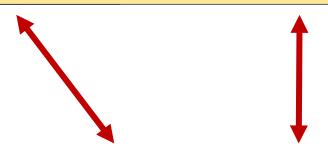
Extremely low viral load but potential infectious risk


HBsAg assay sensitivity & OBI status

Development of HBsAg assays with improved analytical sensitivity

- Enzymatic immunoassays (EIA) --> LoD: 0.013 1 IU/mL
- Chemiluminescent enzyme immunoassay (CLIA) --> LoD = 5 mIU/mL
- Immune complex transfer CLIA (ICT-CLIA) --> LoD = 0.5 mIU/mL

	HBsAg Liaison-XL (DiaSorin; LoQ: 0.05 IU/mL)	Lumipulse G HBsAg-Quant (Fujirebio; LoQ: 0.005 IU/mL)
Reactive samples	0/32*	7/36
%	-	19.4%

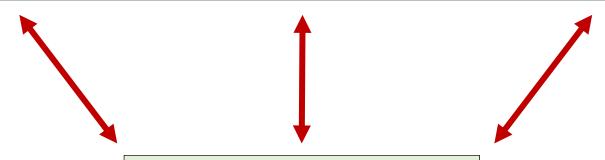

Overtime fluctuation of HBV DNA load in OBI donors

HBV transmission from anti-HBc only OBI donor 6 cases documented

(Candotti et al. Gut 2018)

	Recipient 2-1			Recipient 2-2		
	Female 69y, dialysis & cirrhosis			Male 67y, trauma surgery		
	FFP transfused			FFP transfused (x+3)		
	Hepatitis 8 months post-tx			16 months post-tx		
_		Pre-tx	Post-tx	Pre-tx Post-tx		
_	HBsAg	-	+	- +		
	HBV DNA	ND	6E+07 IU/mL	ND []		
	Anti-HBc	-	+	- +		
_	Anti-HBs	-	-	- I		

Donor 2


Male, 53y, repeat donor (x21; 2009-2014) HBsAg - & DNA -(follow-up: 3xR & 20xNR)

Anti-HBc +
Ultra ♂ 20 mL plasma → DNA pos

HBV transmission from anti-HBc only OBI donor 6 cases documented

(Candotti et al. Gut 2018)

	Re	cipier	nt 2-1	Recip	ient 2-2	Recipie	ent 2-3
	Female 69y, dialysis & cirrhosis		sis & cirrhosis	Male 67y, trauma surgery		Male 79y, gastro surgery	
	FFI	P trans	fused	FFP transfused (x+3)		FFP transfused (x-57)	
	Hepatitis	8 mo	nths post-tx	16 mont	ths post-tx	78 month	s post-tx
-		Pre-tx	Post-tx	Pre-tx	Post-tx	Pre-tx	Post-tx
_	HBsAg	-	+	-	+	-	+
	HBV DNA	ND	6E+07 IU/mL	ND	-	ND	+
	Anti-HBc	-	+	-	+	ND	+
	Anti-HBs	-	-	-	+	ND	-

Donor 2

Male, 53y, repeat donor (x21; 2009-2014) HBsAg - & DNA -(follow-up: 3xR & 20xNR)

Anti-HBc +
Ultra ♂ 20 mL plasma → DNA pos

HBV transmission from anti-HBc only OBI donor 6 cases documented

(Candotti et al. Gut 2018)

	Recipient 2-	1	Recipi	ent 2-2	Recipie	ent 2-3	
	Female 69y, dialysis 8	cirrhosis		auma surgery	Male 79y, ga		
	FFP transfuse		• •	fused (x+3)	FFP transfu	. ,	
	Hepatitis 8 months	post-tx	16 mont	hs post-tx	78 month	is post-tx	
•	Pre-tx	Post-tx	Pre-tx	Post-tx	Pre-tx	Post-tx	•
•	HBsAg -	+	-	+	-	+	
	HBV DNA ND 6E-	+07 IU/mL	ND	-	ND	+	
	Anti-HBc -	+	-	+	ND	+	
	Anti-HBs -	-	-	+	ND	-	

3,257-nt sequences Genotype D2 **99.9% identity**

Donor 2

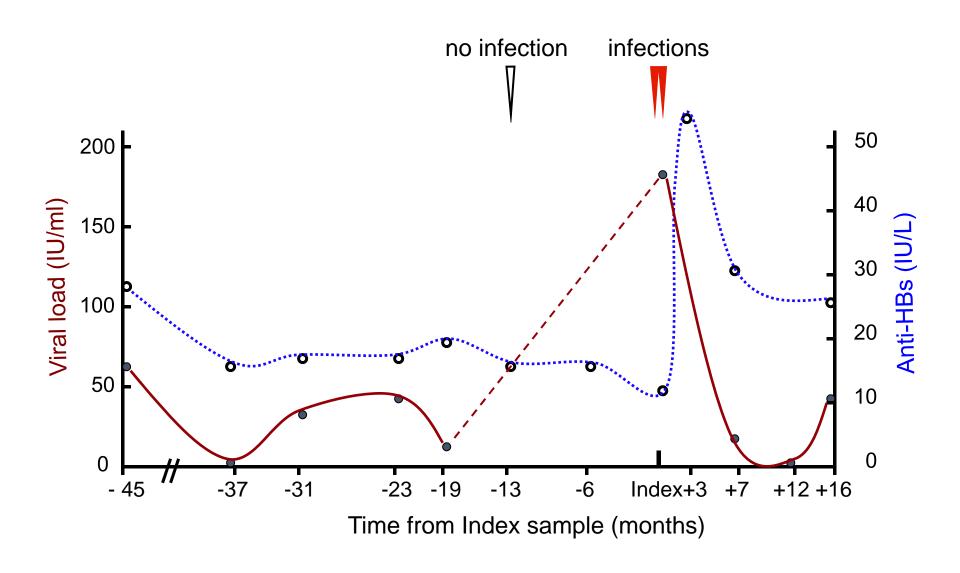
Male, 53y, repeat donor (x21; 2009-2014) HBsAg - & DNA -(follow-up: 3xR & 20xNR)

Anti-HBc +
Ultra ♂ 20 mL plasma → DNA pos

Unaware of infection No clinical sympt.

VL: 10⁹ IU/mL

HBV infection in 31 recipients transfused with HBsAg neg/HBV DNA neg blood products


Recipients	Blood products			
	FFP	RBC	PLT*	Total
Anti-HBs pos	-	0/4	0/3	0/7
Anti-HBs neg	7/11 (64%)	2/10 (20%)	0/3	9/24 (37.5%)

^{*} Pathogen reduction treatment of platelet concentrates.

TTI residual risk associated with HBsAg neg/HBV DNA neg/anti-HBc pos donations: 3% (RBC) - 14% (FFP)

Anti-HBs+ OBI transfusion transmission

(Levicnik Stezinar et al. J Hepatol 2008)

Can anti-HBc testing prevent OBI transmission?

- Anti-HBc testing improves blood safety but limited by HBV prevalence --> blood shortage
- Anti-HBc negative OBI donors

Anti-HBV markers	OBI donor origins			
	Dalian (China)	South East Asia*	Worldwide**	
N	294	111	604	
Anti-HBc +/anti-HBs +	108	43	296	
	(36.7%)	(39%)	(49%)	
Anti-HBc +/anti-HBs -	160	53	272	
	(54.5%)	(48%)	(45%)	
Anti-HBc -/anti-HBs +	25	15	24	
	(8.5%)	(13%)	(4%)	
Anti-HBc -/anti-HBs -	1	0	12	
	(0.3%)	-	(2%)	

^{*}Hong Kong (n=75), Malaysia (n=3), Singapore (n=11), and Thailand (n=22) (Candotti et al. Gut 2012).

^{**} Donors from South Africa (n=3,416), the Mediterranean region (n=1,608), Central & Northern Europe (n=503), South East Asia (n=3,754), and Oceania (n=174) (Lelie *et al.* Transfusion 2017).

Conclusions (1)

- Desirable risk zero goal yet to be achieved despite accumulation of biosafety measures (utopic?)
- OBI remains the main risk of TTID but identification depends on:
 - Archived sample availability --> limited volume
 - Extended serologic and molecular testing of donor & recipient
 - Analytical performance of serlogic and molecular assays used
 - Genetic characterization of viral strains infecting donor & recipient
- Anti-HBc-only donations can be infectious in immunocompetent recipients
 - FFP (28.6% 50%) > RBC (0% 4.5%)
 - 81% recipients not infected
 - Transmission rate: 9.5% (molecular confirmation) 19% (indirect evidences)
- Estimated HBV infectious dose: 16-160 virions (<600 IU) per transfusion
 - Related to residual plasma volume in blood products
 - Protective role of anti-HBs in donor and/or recipient (non-optimal?)
 - Immune status of recipient

Conclusions (2)

- Anti-HBc testing improves blood safety but limited by HBV prevalence
- Infected donations tested false-negative with serology and/or NAT still persist
- Frequency of exposure to HBV-infected blood products and transfusiontransmission underestimated?
- Debates on apparent redundancy of markers and blood testing cost reduction
 - HBsAg testing removal when NAT and HBcAb testing in place
 - Large scale studies needed to evaluate impact on blood safety
- HBV screening strategy should be decided according to local epidemiology, infectious risk estimate, and resources
- Perspectives:
 - Universal HBV vaccination (?) --> OBI reported in vaccinated blood donors
 - Pathogen reduction technology --> in dvlpt, cost, clinical impact?

Acknowledgements

Institut National Transfusion Sanguine DATS/CNR Risques Infectieux Transfusionnels Paris, France

S. Laperche

L. Boizeau

Virology Sub-group Transfusion-transmitted Infectious Diseases Working Party ISBT

M. Vermeulen

N. Lelie

P. Grabarczyk

M. Miletic

C. Niederhauser

...

of Slovenia
Ljubljana, Slovenia
S. Levicnik-Stezinar

University of Cambridge Dept Haematology Cambridge, UK

J.-P. Allain

F. Enjalbert

S. Assennato

Dalian Blood Center Dalian, P. R. China

X. Deng

X. Liang

H. Chen

Blood Center staffs &

Donors