# ALTERNATIVE VACCINATION STRATEGIES FOR PRIMARY NON-RESPONDERS ON HEPATITIS B VACCINATION

Stijn Raven, M.D.

research coordinator,

Radboud University Medical Centre

Regional Health Service West-Brabant, The Netherlands

VHPB Technical meeting Vilnius, Lithuania April 25<sup>th</sup> 2019

# Disclosure of speaker's interests

### Investigator initiated study

| (Potential) conflict of interest                                                                       | See below                                                                                                                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Potentially relevant company relationships in connection with event                                    | none                                                                                                                                                                                                                                                   |  |  |  |
| Sponsorship or research funding                                                                        | <ul> <li>this study was supported by the<br/>National Institute of Public Health and<br/>the Environment [RIVM<br/>programmabudget]</li> <li>vaccines used in this study were<br/>provided by GlaxoSmithKline and Merck<br/>Sharp &amp;Dome</li> </ul> |  |  |  |
| <ul><li>Fee or other (financial) payment</li><li>Shareholder</li><li>Other relationship, i.e</li></ul> | <ul><li>none</li><li>none</li><li>none</li></ul>                                                                                                                                                                                                       |  |  |  |
|                                                                                                        |                                                                                                                                                                                                                                                        |  |  |  |

### Background

5 – 30%¹ healthy adults fail to develop a protective anti-Hbs titre non- responder: anti-HBs titre < 10 IU/I

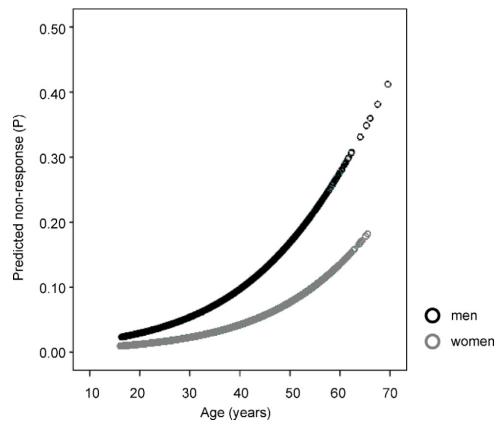



Figure: Predicted non-response to hepatitis B vaccination

<sup>1</sup>Vermeiren et al. Journal of Clinical Virology 2013

# Strategies to improve response

- Additional doses of antigen HBsAg
- Higher dose of antigen HBsAg
- alternative routes of administration (intradermal)
- Different adjuvants
- Different antigens
- HBsAg combined with other antigens
- HBsAg combined with other immunostimulatory substances

# Strategies to improve response: additional doses

- 'Proof of principle' trial
- N=12 healthcare workers, anti-HBs < 10 IU/I
- Mean age 35 years
- Further booster doses until the threshold has been reached

- mean 7.8 (range 4-11) mean 10.3 (range doses ≥ 10 IU/I
- 8-14) doses ≥ 100 IU/I

# Strategies to improve response

- Additional doses of antigen HBsAg
- Higher dose of antigen HBsAg
- alternative routes of administration (intradermal)
- Different adjuvants
- Different antigens
- HBsAg combined with other antigens
- HBsAg combined with other immunostimulatory substances

# Strategies to improve response:

- Management options in healthy non-responding adults
- comparing different antigen doses, route of administration and additional doses
- 16 studies included in the systematic review and meta-analysis

Pooled seroconversion rates by management option and number of additional doses.

| Management option | Number of studies | Total (N) | Seroconversion rate % | (95% CI)            |                     |                     |
|-------------------|-------------------|-----------|-----------------------|---------------------|---------------------|---------------------|
|                   |                   |           | 1st additional dose   | 2nd additional dose | 3rd additional dose | 4th additional dose |
| IM-20             | 9                 | 833       | 62% (41-83%)          | 68% (61–100%)       | 81% (61–100%)       | Not available       |
| IM-40             | 3                 | 161       | 60% (23–97%)          | 50% (33-67%)        | 53% (36–70%)        | Not available       |
| ID-5              | 3                 | 50        | 54% (39-69%)          | 77% (65–89%)        | 85% (75–95%)        | 89% (80-98%)        |
| ID-20             | 1                 | 23        | 61% (47–75%)          | 90% (78–100%)       | Not available       | Not available       |
| Total             | 16                | 1067      |                       |                     |                     |                     |

- Heterogeneity  $l^2 > 90\%$
- Classification by antigen dose
- Need for more evidence-based approaches (RCT)

David et al. Vaccine 2015

# Strategies to improve response

- Additional doses of antigen HBsAg
- Higher dose of antigen HBsAg
- alternative routes of administration (intradermal)
- Different adjuvants
- Different antigens
- HBsAg combined with other antigens
- HBsAg combined with other immunostimulatory substances

# Strategies to improve response: different adjuvants

#### Registered vaccine

- AS04 (MPL\*+ alum\*\*) TLR-4 (Fendrix)
- immunostimulatory sequences TLR-9 HepB-CpG (Heplisav-B)

#### Pre-clinical/phase 1

- δ inulin (Advax)
- AI20: 20 μg recombinant human IL-2 + alum (experimental vaccine)

\* MPL: monophosphoryl lipid A

\*\* Alum: aluminium salt-based adjuvants

# Strategies to improve response: different adjuvants

| Reference                       | Vaccine 1        | Vaccine 2          | Inclusion<br>criteria | Schedule     | Participants       | Response ≥<br>10 IU/I | Response ≥<br>100 IU/I |
|---------------------------------|------------------|--------------------|-----------------------|--------------|--------------------|-----------------------|------------------------|
| 2002, Jacques<br>et al, Vaccine | Fendrix<br>40 µg | Engerix-B 20<br>μg | ≥ 4 doses recombinant | 3-IM (0,1,5) | Healthcare<br>NR   | 1: 98%*               | 1: 90%                 |
|                                 |                  |                    | HB vaccine            |              | 1: N=58<br>2: N=57 | 2:68%                 | 2: 46%                 |
| 2013, Halperin                  | HBsAg-           | Engerix-B 20       | 3 doses               | 1-IM         | Healthy adults     | 1 53%                 | 1:21%                  |
| et al, Human                    | 1018‡            | μg                 | recombinant           |              | NR                 | 2 38%                 | 2:13%                  |
| Vac &                           | 20μg             |                    | HB vaccine            |              | 1: N=19            |                       |                        |
| Immunothera-<br>peutics         |                  |                    |                       |              | 2: N 16            |                       |                        |

<sup>&</sup>lt;sup>‡</sup> HepB-CpG (Heplisav)

# Strategies to improve response: different adjuvants



- Phase 1, open-label in true non-responders
- Aggregated IL-2 to alum

Koc et al. 2018 J Viral Hepat.

# Strategies to improve response

- Additional doses of antigen HBsAg
- Higher doses of antigen HBsAg
- alternative routes of administration (intradermal)
- Different adjuvants
- Different antigens
- HBsAg combined with other antigens
- HBsAg combined with other immunostimulatory substances

# Strategies to improve response: different antigens

S, PreS1 and PreS2 antigens: third generation PreS/S vaccine (Sci-B-Vac)

| Reference                                | Vaccine 1                 | Vaccine 2       | Inclusion<br>criteria                                            | Schedule     | Participants           | Response ≥<br>10 IU/I | Response ≥<br>100 IU/I |
|------------------------------------------|---------------------------|-----------------|------------------------------------------------------------------|--------------|------------------------|-----------------------|------------------------|
| 2006, Rendi-<br>Wagner et<br>al, Vaccine | PreS1/PreS2<br>/S vaccine | Engerix-B<br>20 | ≥4<br>recombinant<br>vaccine<br><10 IU/I (NR)<br>(<100 IU/I (LR) | 1-2 IM (0-3) | 1:226<br>2:108         | 1:82%*<br>2:49%       | 1:36%*<br>2:21%        |
| 2014,<br>Krawczyk et<br>al, Vaccine      | PreS1/PreS2<br>/S vaccine | N.A.            | ≥3<br>conventional<br>vaccine<br><10 IU/I (NR)<br><100 IU/I (LR) | 3 IM (0-1-6) | 1a: 15 NR<br>1b: 6: LR | 1a:93%                | 1a:80%<br>1b:100%      |

NR: non-responder, anti-HBs < 10IU/I

LW: low-responder, anti-HBs < 100 IU/I

# Strategies to improve respons: HBsAg combined with other antigens/immunostimulatory substances

#### HBsAg combined with hepatitis A antigen

| reference                              | Vaccine 1                      | Vaccine 2 | Inclusion<br>criteria | Schedule | Participants             | Response ≥<br>10 IU/I | Response ≥<br>100 IU/I |
|----------------------------------------|--------------------------------|-----------|-----------------------|----------|--------------------------|-----------------------|------------------------|
| Cardell et<br>al. 2008 J<br>Infect Dis | Twinrix 2 ml<br>40 μg<br>HBsAg | N.A.      | 4 ID Engerix          | 3 IM     | Healthcare<br>NR<br>N 44 | 95%                   | 80%                    |

#### **GM-CSF**

| Reference                          | Vaccine 1                       | Vaccine 2       | Inclusion<br>criteria | Schedule     | Participant<br>s                                    | Response ≥<br>10 IU/I | Response ≥ 100 IU/I |
|------------------------------------|---------------------------------|-----------------|-----------------------|--------------|-----------------------------------------------------|-----------------------|---------------------|
| 2010, Lin C<br>et al, J<br>Infect. | Engerix-B +<br>GM-CSF 150<br>μg | Engerix-B<br>20 | ≥ 3 Engerix-B         | 3 IM (0-1-6) | general<br>population,<br>NR<br>1: n=34<br>2: n= 33 | 1: 82%<br>2: 75%      | 1: 65%*<br>2: 39%   |

### Aim of the study

To determine the immunogenicity of three different hepatitis B revaccination series:

- HBVaxPro-40

alum, higher antigen dose (40

μg)

- Fendrix MPL + alum (20  $\mu$ g)

- Twinrix alum + HAV adjuvant (20 μg)

Compared to a standard revaccination series of three Engerix-B (20  $\mu g$ ) or HBVaxPro-10 (10  $\mu g$ )

#### **Outcomes**

# Primary outcome:

Seroconversion rate; percentage of participants with a protective anti-HBs titre ≥ 10 IU/I

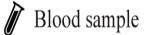
# Secondary outcome:

- Adverse events (7 days) after vaccination
- Seroconversion rate stratified by baseline titre (< 1 IU/l vs > 1-9 IU/l)

## Study design / population

parallel-group, multi-centre, randomised, controlled trial Allocation ratio of 1:1:1:1, stratified by site and using a fixed block size of 4

HBV non-responders: anti-HBs titre < 10 IU/l after three HBV vaccinations (0,1, and 6)


#### Inclusion criteria

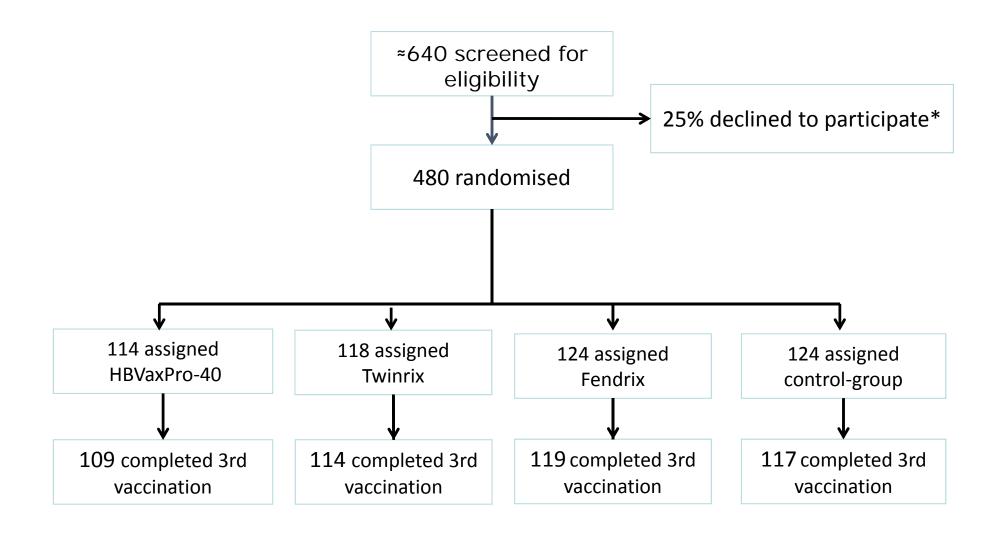
- age:18-80 years
- immunocompetent
- no pregnancy
- no mixed primary schedule
- no markers of previous or current HBV infection

### Data collection








Side effects diary

### Outcome analysis

#### Anti-HBs measurement:

- four blood samples
- stored until study completion at minus 20°
- Central laboratory, Leiden UMC
- ARCHITECT assay (Abbott Laboratories)

- •Intention-to-vaccinate (ITV) analysis
- Last observation carried forward for missing variables



<sup>\*</sup> Based on centres responsible for 1/3 of inclusion

#### Conclusion & recommendations

Many strategies available to overcome non-responsiveness

Revaccination with Fendrix or HBVaxPro-40 resulted in significantly better seroconversion rates and titre heights and should be considered over standard revaccination schemes.

Fendrix showed some higher reactogenicity compared to the other vaccines.

Role of the primary antibody titre between the 'zero-responder' and 'poor-responder' group should be studied in future research



# Acknowledgment

National Institute for Public Health and the Environment:

dr. Jim van Steenbergen

Maastricht UMC+:

Prof. dr. Christian Hoebe

RadboudUMC:

dr. Jeannine Hautvast

#### LUMC:

- •Prof. dr. Leo Visser
- dr. Ann Vossen
- dr. Anna Roukens
- drs. Domenique van Adrichem

#### Participating centres:

- Regional public health services
- Ease Travel Clinic & Health Support
- LUMC
- UMCU