

Non-responsiveness to Hepatitis B vaccination - host risk factors (genetics, age, sex, BMI, Vitamin D...)

Primary vaccine failure to routine vaccines: Why and what to do? *Wiedermann et al, Human Vaccines & Immunotherapeutics 2016*

VHPB Technical Meeting, April 25th-26th in Vilnius, Lithuania

Erika Garner-Spitzer, MSc, PhD

Medical University Vienna Institute of Specific Prophylaxis and Tropical Medicine

Vaccine failure

1

incomplete strain coverage, escape mutants, manufacturing, etc.

- → host related vaccine failure
- clinical → VPD in correctly vaccinated individual
- immunological → no serological correlate of protection
 - o primary lack of seroconversion
 - secondary quickly waning immunity

Heiniger et al, Vaccine 2012 Wiedermann et al, Human Vaccines & Immunotherapeutics 2016

Host risk factors for Hep B non-responsiveness

Intrinsic factors:

- Genetics
- Age
- Sex
- Co-morbidities

Nutritional factors:

- BMI
- Vitamin D

Behavioural factors:

- Smoking
- Stress

Intrinsic risk factors - Genetics

HLA genes - encode MHC Class II proteins on APCs

- MHC II + Ag peptide complex → recognized by TCR of CD4+ Th cells

Intrinsic risk factors - Genetics

Certain HLA haplotypes - associated with poor immune response to HBsAg vaccine

McDermott et al, Tissue Antigens 1997
HLA typing of HBs Ag vaccine NR – DRB1*0701, DQB1*02

Desombere et al, Tissue Antigens 1998
DRB1*0701, DPB1*1101, DQB1*02
DRB1*03 – when in combination with DQB1*02

Desombere et al, Clin Exp Imm 2005

Investigation of non-repsonders with DRB1*03 & DRB1*07 HLA subtypes

→ not caused by defective Ag uptake & presentation or lack of co-stimulation (CD86)

Kruger et al, Clin Exp Imm 2005
 DRB1*0701, DRB1*0301 subjects
 → no defect in HBs Ag peptide binding to these MHCII molecules

- → post-genetic factors for lack in T-cell responses ?
- → differences in T-cell recognition, TCR arrangement ?

Intrinsic risk factors - Genetics

Immunologic characterization of TBE and Hepatitis B Non-responders (Garner-Spitzer et al, J Immunol 2013)

→ booster vaccination with TBE & Influenza vaccine (Ag-specific?)

TBE non-responders:

→ no/low humoral & cellular responses to TBE, but sufficient to Influenza vaccine

Hepatitis B non-responders:

- → <u>unimpaired</u> humoral responses to both <u>unrelated</u> vaccine Ags
- → abrogated T-cell proliferation in-vitro (no IL-2 and IFN-y production)
- → DRB1*0701, DQB1*02 overrepresented, ↑ IL-10 base line levels
- → increased B-reg precursors before booster, possibly contribute to ↑ baseline IL-10 and induction of Tregs post booster
- Hep B NR → genotype of high TGF-ß and IL-10 secretion (Jarroson et al, Vaccine 2005)
- functional polymorphism in IL-10 promoter → negative influence on Ab titers (Höhler et al, Hepatology 2005)
 - → impaired responses to Hep B vaccine due to IL-10 inhibited T-cell activation?

Intrinsic risk factors - Age

Immunosenscence = age-related changes of the immune system

- enhanced basal inflammation ("inflammaging") → increase of down-regulatory mechanisms
- ↓ innate responses, TLR signaling & activation of APC
 - → impaired Ag-presentation
- ↓ naïve vs. ↑memory compartments (B- and T-cells)
- reduced diversity of naïve B-cell & antibody repertoire
- reduced TCR diversity & signaling
 - → defective T-cell help & impaired T-cell dependent B-cell responses
 - → poor IgG responses to protein antigens
- \[
 \naive vs. \\
 \]
 terminally differentiated memory CD8 T-cells
 (due to latent viral infections, e. g. CMV, reside in BM niches)
 - → decreased persistence of Abs (loss of survival niches for PZ?)

Goronzy & Weyland, Nature Review 2013 Boraschi et al, Sciene Trans Med 2013

Intrinsic risk factors - Age

Immunosenescence → affects responsiveness to several vaccines
e. g. HepA, HepB, Diphteria, Tetanus, PPV23, TBE, TIV

(Review Zimmerman & Curtis, Clinical Microbiology Reviews, 2019)

Consequences for primary & booster vaccination:

- more frequent booster vaccinations in subjects >60 a (TBE, DTaP in Austria)
- ISPTM study on primary vaccination with JE vaccine in elderly >65 a (Wagner, Garner-Spitzer et al, Sci Rep. 2018)
 - 43% low/non-responders after 2 doses of neo-antigen (0-1mo)
 - reduced ag-specific IFN-y, expanded B & T-cell memory subsets
 - → prominent in CMV+ eldery vacinees
- primary Hepatitis B vaccination in elderly subjects (Tohme et al, Vaccine, 2011)
 - seroprotection rate 88% ≤60a vs. 12% ≥90a

Intrinsic risk factors - Age

Percentage of non-responders after Hevac-B or Engerix B in HCW (0-1-4, titer 1-6 mo post 3rd vacc)

(Sabidò et al , Vaccine 2007)

(Sabras et al., Vacenie 2007)						
Factor	Level	Number of HCW ^a	Number (%) no-responders	Odds ratio ^b	95% (c.i.)	p-Value
Age (years)	<35 35–49 ≥50	1221 643 175	57 (4.67) 63 (9.80) 38 (21.71)	1.0 2.22 5.66	(1.53, 3.22) (3.62, 8.85)	<0.001 <0.001

Integrated analysis: age –response to Engerix B (Van Der Meeren, Human Vaccin Immunother 2015)

SPR 98.6% in adults vaccinated at age 20–24 a vs. 64.8% at age >65 y Predicted SPR \rightarrow 90% up to 49 y and 80% up to 60 y

Meta-analysis (Yang et al, Sci Rep 2016): evaluation of relative risk (RR) for decreased response

Adults ≥ 30a - RR: 1.77

≥ 40a - RR: 1.86 → Hep B vaccination at a young age to achieve long-lasting immunity

≥ 60a - RR: 1.30

Duration of protection and anamnestic response after booster in children vaccinated in infancy (Salalma et al, Egypt J Imm 2014)

- n= 898; 9 mo to 16 a; 58% have sero-protective titers (> 10 IU/L)
- non-protective titers in children < 5 years (11.1%) vs. > 10 years (64.8%)
- 92% had anamnestic response, pre-booster titer < 3.3 IU/L = predictor for NR

Intrinsic risk factors - **Sex**

$m/f \rightarrow differences$ in innate and adaptive immune responses

- → more robust humoral (and cellular) immune responses to infection and vaccination
- → higher Ab titers to TIV, YF, MMR, Hep A and B, HSV2, rabies, smallpox
- steroid sex hormones estrogens, testosterone, progesteron
 - $ER\alpha/\beta$ expressed on many immune cells
 - estrogens → increased Th2 activation, expanded B-cell proliferation & higher Ab titers

testosterone & progesteron - inhibitory effects on Ab production

↑ testosterone - ↓ neutralizing TIV Ab titers (Furman et al, PNAS 2014)

- genetic & epigenetic regulation
 - immune related genes on X chr \rightarrow polymorphisms & damaging mutations \uparrow effect on males hormones influence epigenetic regulation of gene expression mi RNAs repress mRNA translation or trigger degradation (80 encoded on X, 2 on Y chr)

Klein et al, Lancet Inf. Dis 2010 Klein et al, Trans R Soc Trop Med Hyg 2015

Intrinsic risk factors - **Sex**

ISPTM – study data support m/f difference in vaccine responses

- 1) TBE booster in allergic cohort (Garner-Spitzer et al, Vaccine 2018)
 - ↑ fold increase in female controls, but no gender difference in allergic group (males Th2 bias)
- 2) TBE booster in obese (Garner-Spitzer et al, in manus)
 - fold increase in obese, but faster decline of neutralizing Abs (6 mo)
 - ↑ incresase only in obese males (↓ testosteron levels)

m/f differences in response to Hep B vaccine (Klein et al, Lancet Inf. Dis, 2010)

- Hep B higher Ab titers in females (children & adults) (Jilg et al, Lancet 1984; Fang et al, J Trop Peditr 1994)
- also for Hep A/B (Van der Weilen, Vaccine 2006; Höhler, Vaccine 2007)
- decline rate until 10 a not different between boys and girls (Wu, J Infect Dis 1999)
- > 60a similar SCR to Hep A/B in m/f (Wolters, Vaccine 2003)
- Proposed meta-analysis of sex differences in response to childhood vaccines (Voysey et al, BMJ open 2016)
 →results pending

Nutritional risk factors — BMI (body mass index)


```
Obesity - BMI ≥ 30 obese
```

- positve energy balance → accumulation of WAT
 - → functions as endocrine organ

obese: \downarrow adiponectin (anti-inflammatory)

↑ leptin (pro- inflammatory)

Kanneganti et al, NR Imm 2012 Abella et al, NR Rheuma 2017

LEPR - expressed in CNS (to regulate food intake)

- on Mph, NK, T- & B-cells
- → direct impact on IS, promotes Th1/pro-inflammatory cytokines
- → chronic inflammation & immune dysfunction

Co-morbidities - T2D, cardiovascular disease, etc. & increased susceptibility to infections

- ↓ humoral vaccine responses to Hep A/B, Tetanus, Rabies
- ↓ CTLs and faster Ab decline Influenza (Sheridan et al, Int. J Obesity 2012)

ISPTM - **TBE booster vaccination** in obese subjects (Garner-Spitzer et al, in manuscript)

- obese show higher fold increase & faster decline of Abs shorter duration of protection?
- correlated to BMI, leptin, insulin

Nutritional risk factors — **BMI**

Hepatitis B vaccination in obese subjects (Review by Painter et al , Vaccine 2015)

Roome et al, JAMA 1993 - investigation of recombinant Hep B vaccines

BMI 25–35 kg/m2 \rightarrow 11 % \leq 10 mIU/mL BMI \geq 35 kg/m2 (severly obese) \rightarrow 61.5% \leq 10 mIU/mL, 45% \leq 2 mIU/mL

- Wood et al, JAMA 1993
 Obesity independent risk factor (p < 0.01) for non-protective anti-HBs titers (Recombivax HB)
- Averhoff et al, Am. J Prev. Medicine 1998; Simo et al, Vaccine 1996
 Confirmation of obestiy as risk factor also for reduced Ab levels to Engerix-B vaccine
- Continuing evidence for obesity as risk factor for diminished/non-protective anti-HBs titers over time (ul-Haq et al, Vaccine 2003; Estevez et al, J Int Assoc Biol Stand 2007; Young et al, PLoS ONE 2013)
- Fan et al, Vaccine 2016 15 studies in meta analysis, 3122 participants
 - → obese population significantly associated with non-response to Hep B vaccination unadjusted OR: 1.99, 95% (CI: 1.47–2.69) adjusted OR: 2.46, 95% (CI: 1.50–4.03)

Intrinsic risk factors — Co-morbidities

1) Chronic renal disease (CRD), ESRD (requiring haemodialysis)

```
CRD/uraemia → inflammation - activation of innate IS (Mono, Mph, granulocytes)

→ immune deficiency - depletion of DC, naïve and central memory T cells, B cells

- impaired phagocytic function of neutrophils & monocytes

(Vaziri et al, J Ren Nutr. 2013)
```

HD patients - high risk of Hep B infection (frequent parenteral interventions) \rightarrow vaccination crucial!

- SCR to HBV vaccine in long term HD patients— 77 % (Cordova et al, Ann IG, 2017)
 - SCR 93 % when ↑ serum albumin (in younger vaccinees)
 - higher GFR better response → vaccination at onset of CRD
- 16.5 % non-responders to HBV vaccine in HD patients (Asan et al, Int Urol Nephrol 2017)
 - more in Hep C positive patients, BMI >30, >65 a, duration of HD >5 years
- different vaccination routes/schedules in NR HD patients (Barraclough, American Journal of Kidney Diseases 2009)
 - 5μg i. d. weekly (8x) SCR 79 %
 - 40μg i. m. 0 + 8w (2x) SCR 40 %

Intrinsic risk factors — Co-morbidities

2) Diabetes mellitus (DM)

- in children and adults with DM lower Ab responses to Hep B vaccination (Zimmerman & Curtis, Clinical Microbiology Reviews, 2019)
- Meta analysis by *Schillie at al, Diabetes Care 2012*Hep B vaccination in children and young adults with DM (US standard administration [0-1-6, 0-1-2-12])
 - → similar responses as age-matched, non-diabetic controls
 - → adults with DM reduced response, particularly with coexisting CRD

3) Celiac Disease (CD)

- lower Ab responses to Hep B vaccination & more rapid waning of Abs in children (overview of literature Zimmerman & Curtis, Clinical Microbiology Reviews, 2019)
- meta-analysis Hep B vaccination in CD patients (Opri et al, Vaccine 2015)
 - retrospective studies SCR 54% (82% in controls) n=832
 - prospective studies SCR 66% (90% in controls) n=184

→ influence of microbiome?

Nutritional risk factors — Vitamin D deficiency

Vitamin D & immune function (Hewis et al, PNAS 2011)

- immune cells convert precursor 25-hydroxyvitamin D to active 1,25-dihydroxyvitamin D
- Vit D promotes antimicrobial responses in macrophages & regulates APC maturation
 → control of T-cell function, crucial for Treg induction

Vit D deficiency & TIV vaccine responses

- conflicting data
- in HD patients higher TIV Ab levels with vitamin D supplementation

Vit D deficiency $\& \downarrow$ Hep B Ab responses?

- highly prevalent in patients with chronic kidney disease
- Zitt et al, Vaccine 2012 retrospective study, 200 patients after Hep B vaccination Vitamin D <10 ng/mL in 35.5 % of patients, show 45% SCR; ≥10 ng/mL → 64% SCR (p=0.011)
- Jhorawat et al, Indian J of Gastoenterology 2016
 60 patients with peritoneal- or hemo-dialysis
 Vit D levels not different between responding & non-responding dialysis patients

Behavioural risk factors - Smoking, Stress

 smoking leads to lower Ab responses to Hep B vaccination in some, but not all studies

stress

- mostly investigated with respect to TIV
- influence of stress on Hep B vaccination conflicting data:
 - several studies → lower Ab responses in young adults with stressful life events
 - 1 study → higher antibody responses to Hep B vaccination in young adults with chronic stress
 - some studies no association

(Review Zimmerman & Curtis, Clinical Microbiology Reviews, 2019)

Acknowledgements

Univ. Prof. Ursula Wiedermann, MD, PhD Angelika Wagner, MD, PhD

Medical University Vienna
Institute of Specific Prophylaxis and Tropical Medicine