

Viral hepatitis in pregnant women in England: results from two surveillance studies

VHPB meeting, 1 - 2 June 2017 Heather Bailey, University College London heather.bailey@ucl.ac.uk

Antenatal screening

- Around 650,000 women enter the antenatal screening pathway each year in England
- 1 in 4 live births are to women born outside of the UK

Wales, 2015	Number	Percentage
1 Poland	22,928	3.3
2 Pakistan	17,342	2.5
3 India	13,780	2.0
4 Romania	8,734	1.3
5 Bangladesh	7,752	1.1
Total outside		
the UK	192,227	27.5

ONS figures: ww.ons.gov.uk

Epidemiol. Infect. (2016), **144**, 627–634. © Cambridge University Press 2015 doi:10.1017/S0950268815001557

Hepatitis C virus seroprevalence in pregnant women delivering live-born infants in North Thames, England in 2012

M. CORTINA-BORJA*, D. WILLIAMS, C. S. PECKHAM, H. BAILEY AND C. THORNE

Population, Policy and Practice Programme, UCL Institute of Child Health, London, UK

Background and objectives

- Around 40% of HCV infections in London estimated to be undiagnosed¹
- Population-based analysis of antenatal HCV seroprevalence in North Thames region in 1997-1998 indicated HCV seroprevalence of 0.191%²
- Since then, substantial demographic change
- Aim to establish contemporary antenatal HCV seroprevalence in relation to key demographics

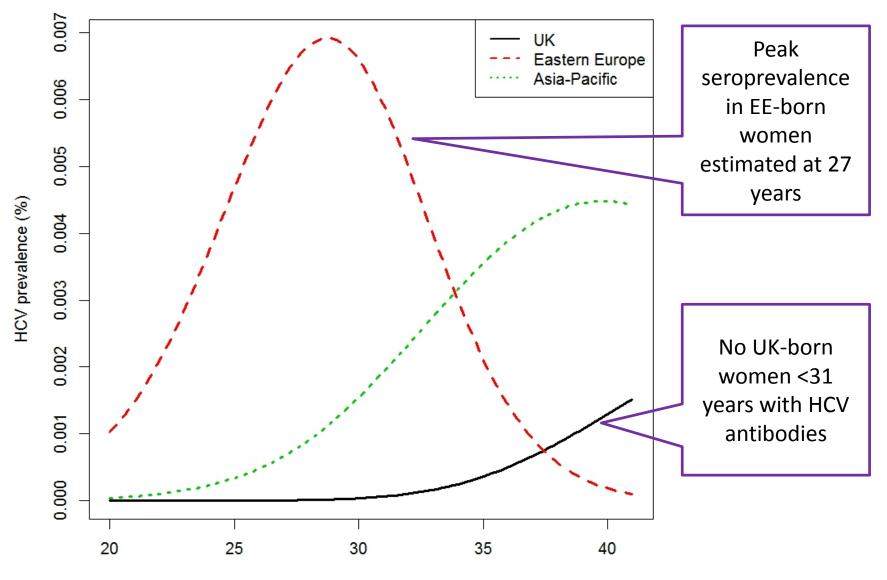
1. Harris RJ, et al. European Journal of Public Health 2012; 22: 187–192. 2. Ades AE, et al. Epidemiology and Infection 2000; 125: 399–405

Methods

- Dried blood spots (DBS) collected routinely for metabolic newborn screening
- This was an unlinked anonymous survey for HCV antibodies in residual DBS from liveborn infants delivered during one quarter (1 April – 30 June 2012) in North Thames
- Samples linked with birth registration records at Office for National Statistics (hospital of birth, maternal borough of residence, parental countries of birth, maternal age)
- Pangenotypic assay used

Methods

- UN classification of countries used to categorize parental country of birth, but Baltic states (Estonia, Latvia, Lithuania) included in Eastern (not Northern) Europe
- Fisher's exact tests were used for 2 × 2 comparisons.
- Logistic regression model with spline terms on age interacting with maternal region of birth


Results

- 31467 DBS specimens analysed
- Data linkage successful for 31316 (99.5%)
- 30 samples were HCV Ab+ giving seroprevalence 0.095% (95% CI 0.067-0.136)
- 1 case of HIV/HCV co-infection giving prevalence 0.0032% (95% CI 0.0002-0.018)
- HCV seroprevalence varied by maternal country of birth

Maternal region of birth	HepC-	HepC+	% total samples	Prevalence (%)
Africa	3188	1	10.14	0.031
Northern Africa	304	0	0.97	0.000
Western Africa	1154	0	3.67	0.000
Central Africa	252	1	0.80	0.395
Eastern Africa	1258	0	4.00	0.000
Southern Africa	220	0	0.70	0.000
UK	15 563	3	49.51	0.019
Rest of Europe	4480	12	14.29	0.267
Northern Europe	332	0	1.06	0.000
Western Europe	526	0	1.67	0.000
Eastern Europe	2997	11	9.57	0.366
Southern Europe	625	1	1.99	0.160
Americas	835	0	2.66	0.000
North America	286	0	0.91	0.000
Central America & Caribbean	275	0	0.87	0.000
South America	274	0	0.87	0.000
Asia-Pacific	5843	10	18.62	0.171
Western Asia	747	0	2.38	0.000
Central Asia	457	1	1.46	0.218
Southern Asia	3691	6	11.76	0.162
South Eastern Asia	388	1	1.24	0.257
Eastern Asia	327	1	1.04	0.302
Oceania	233	1	0.74	0.427
Not known	1528	4	4.87	0.261
Total	31 437	30	100.00	0.095

Table 1. Neonatal anti-HCV prevalence by maternal region of birth, North Thames, England, 2012

HCV seroprevalence by maternal age and region of birth: birth cohort effects

maternal age

Paternal region of birth

- Paternal region of birth known for 22 of 30 infants with seropositive samples; 9 of these fathers were UK-born.
- For only two perinatally HCV-exposed infants were both parents UK-born, giving HCV seroprevalence among UK-born women with UK-born father of infant of 0.016% (2/12,511)

Changes over calendar time

Country /region of maternal birth	HCV seroprevalence in 1997-1998 ^[1]	HCV seroprevalence in this study ^[2] , 2012
Overall	0.191%	0.095%
UK	0.13%	0.02%
Southern Europe	1.58%	0.16%
Eastern Europe	0.40%	0.366%
Asia-Pacific	0.22%	0.17%

- 1. Ades AE, et al. Epidemiology and Infection 2000; 125: 399–40
- 2. Cortina-Borja et al. Epidemiology and Infection 2016; 144: 627-634

Proportion of deliveries in 2012 to women born in EE was 19.2% (vs 0.5% in 97-98)

Injecting drug use

- Particularly difficult to ascertain in pregnant populations due to real /perceived stigma
- History of IDU more common among migrants from EE than among women born in UK^[3]
- However, the HCV seroprevalence in EE-born women in North Thames was ten-fold lower than reported in general AN populations in Ukraine and Russia (around 2-3%) – possibility of 'healthy migrant effect'

3. Burns FM, et al. Sexually Transmitted Infections 2011; 87: 318–324.

Strengths and limitations

- UA survey gives unbiased estimates (very few infants not covered by metabolic screening)
- Measuring HCV Ab, not chronic infection (can't take into account spontaneous clearance, treatment)
- Approach limited to liveborn babies, no information on HCV genotypes, whether woman aware of infection..

Summary

- Around 120 infants born to women with HCV antibodies in North Thames each year
- Maternal HCV seroprevalence 0.095% overall, but important differences existed between maternal country of birth and age sub-groups
- North Thames has different demographic profile to rest of UK, so further work is needed to generalise from these figures

Acknowledgements

Louise Logan Simon Parker

Funding

Medical Research Council Department of Health's National Institute for Health Research Biomedical Research Centres funding scheme Welton Foundation

Thank you