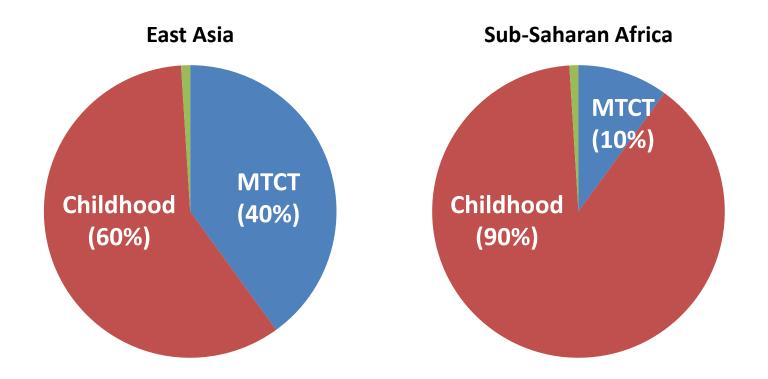
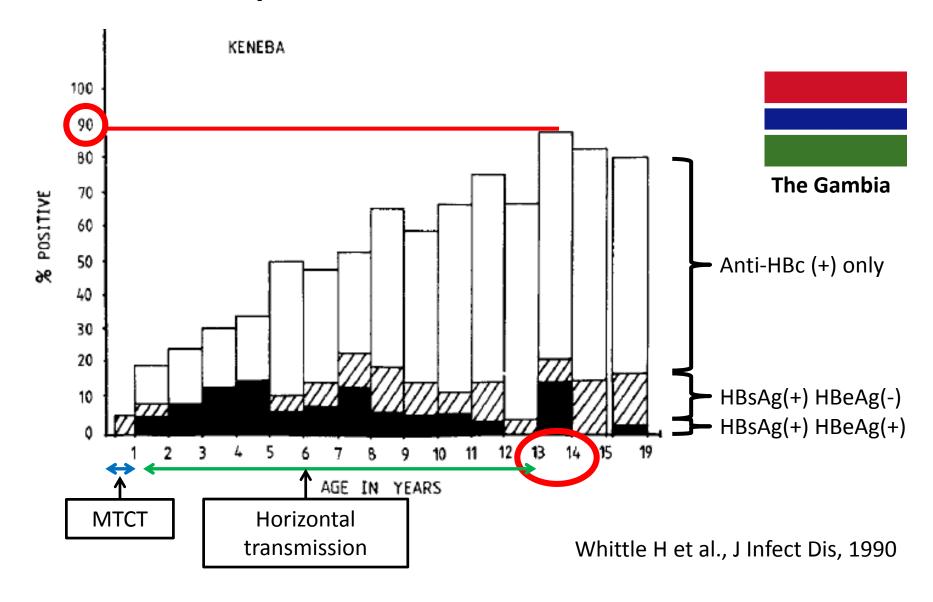


Mother-to-child transmission of hepatitis B in sub-Saharan Africa


1 June 2017
Yusuke SHIMAKAWA
Institut Pasteur, Paris

Epidemiology of HBV in sub-Saharan Africa


Why is the PMTCT of HBV important?

 Current situations and challenges in implementing PMTCT in sub-Saharan Africa

Modes of Transmission

Sero-prevalence in children

Determinants of frequency of MTCT

	East Asia	Sub-Saharan Africa
% pregnant women with	10%	10%
positive HBsAg		

Determinants of frequency of MTCT

	East Asia	Sub-Saharan Africa
% pregnant women with positive HBsAg	10%	10%
% pregnant women with positive HBeAg	40% ←	→ 10%
Risk of MTCT from HBsAg+/HBeAg+ women	70-9	90%
Risk of MTCT from HBsAg+/HBeAg- women	5-3	0 % WHO, 1990

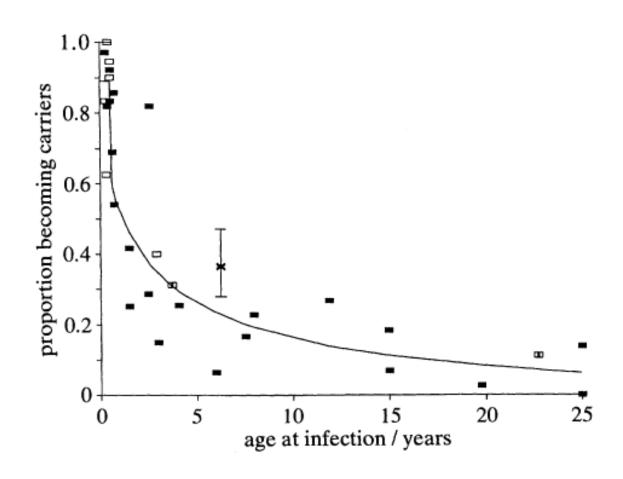
Edmunds WJ et al., Epidemiol Infect, 1996 Howell J et al., J Viral Hepat, 2014

Risk of MTCT from HBsAg(+) HBeAg(+) mothers

No intervention			
Marinier, 1985	3/15	-	0.20 (0.07, 0.45)
Greenfield, 1986	1/2	-	- 0.50 (0.09, 0.91)
Grathwohl, 1992	1/1		1.00 (0.21, 1.00)
Roingeard, 1993	2/2		1.00 (0.34, 1.00)
Menendez, 1999	3/14	-	0.21 (0.08, 0.48)
Subtotal ($I^2 = 50.5$	9%, <i>P</i> = 0.09)		0.38 (0.07, 0.74)

Risk of MTCT from HBsAg(+) HBeAg(-) mothers

No intervention			
Marinier, 1985	0/62	-	0.00 (0.00, 0.06)
Greenfield, 1986	7/49	-	0.14 (0.07, 0.27)
Tsega, 1988	1/20	•	0.05 (0.01, 0.24)
Roingeard, 1993	2/19	•	0.11 (0.03, 0.31)
Menendez, 1999	1/34	•	0.03 (0.01, 0.15)
Subtotal ($I^2 = 71.47$	7%, P = 0.01	\Diamond	0.05 (0.00, 0.13)

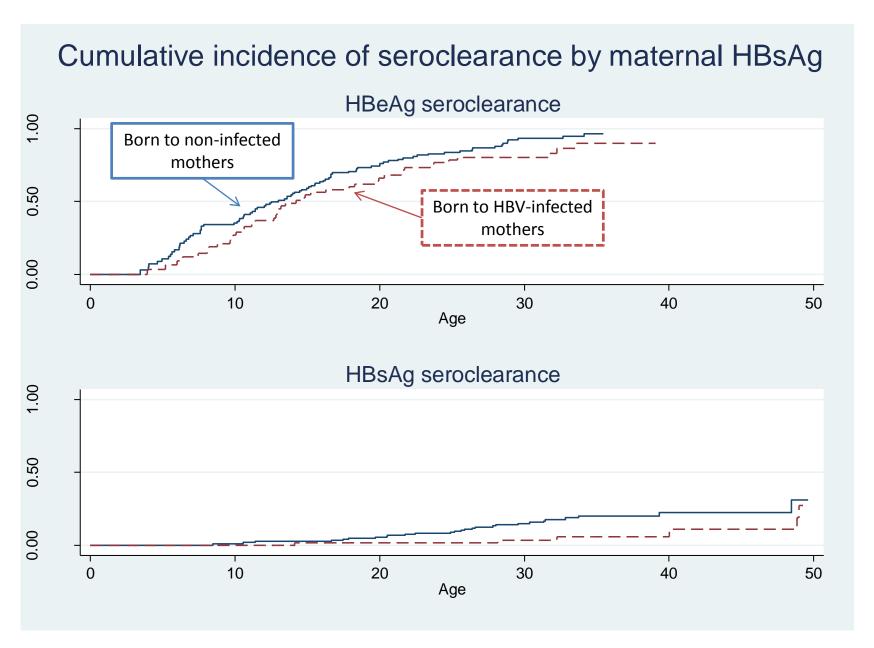

Determinants of frequency of MTCT

	East Asia	Sub-Saharan Africa
% pregnant women with positive HBsAg	10%	10%
% pregnant women with positive HBeAg	40%	10%
Risk of MTCT from HBsAg+/HBeAg+ women	70-90% ←	→> 38%
Risk of MTCT from HBsAg+/HBeAg- women	5-30% ←	→ 5%

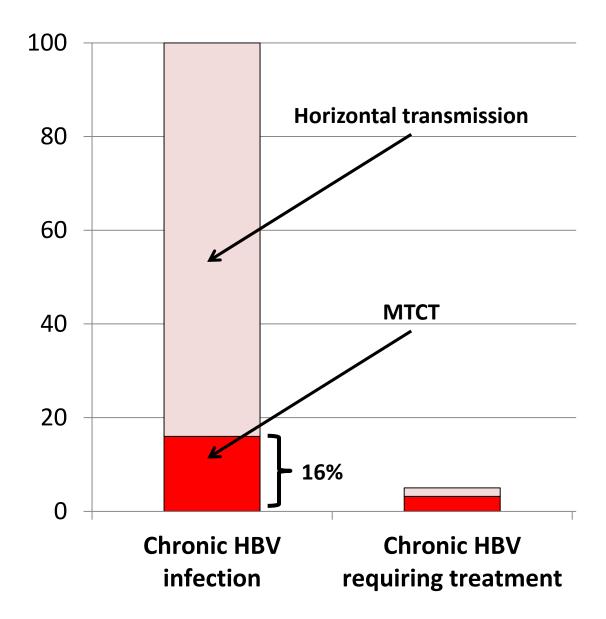
Compared to Asia, the frequency of MTCT in sub-Saharan Africa was low.

However, its prevention is still important in Africa for two reasons.

1. Risk factor for chronic infection


2. Risk factor for Liver Disease

- PROLIFICA
- Longitudinal population-based study in The Gambia
- People with chronic HBV infection
 - 88 born to HBV-infected mothers
 - 165 born to non-infected mothers
- After 28 years of follow-up


Shimakawa Y et al., Gut, 2016

Incidence of liver cancer

Maternal HBV status	Person-years at risk	No. of events	Rate	95% CI
Negative	4 720	0	0 / 100 000	N/A
Positive	2240	2	89 / 100 000	22-356

Prevalence of significant liver fibrosis

Maternal HBV status	Proportion	Adjusted OR	95% CI	р
Negative	4%	1.0		
Positive	15%	5.0	1.6-15.4	< 0.01

Shimakawa Y et al., Gut, 2016 Shimakawa Y et al., Lancet Infect Dis, 2016

It is critical to prevent HBV MTCT in Africa to achieve the WHO's global elimination strategy to reduce:

- Incidence of new chronic infection
 - Mortality from chronic infection

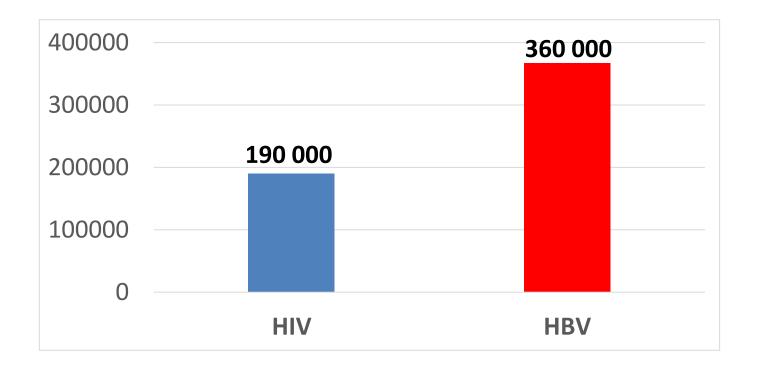
HBV MTCT IS A NEGLECTED PROBLEM IN AFRICA

Hepatitis B vaccine

- Integrated in the national program in all the African countries
- Coverage in Africa: 76% WHO, Wkly Epidemiol Rec, 2016
- As a combined vaccine: 6-10-14 wks
 - Pentavalent (DTaP-Hib-HepB)
 - Hexavalent (DTaP-Hib-IPV-HepB)
- Vaccine failure: 1%
 - Majority (60-90%) are due to MTCT before the
 Vaccine was given
 Ekra D et al., Vaccine, 2008
 Mendy M et al., Plos One, 2013
 Shimakawa Y et al., Gut, 2016

Only 10 countries in sub-Saharan Africa adopted birth dose vaccine

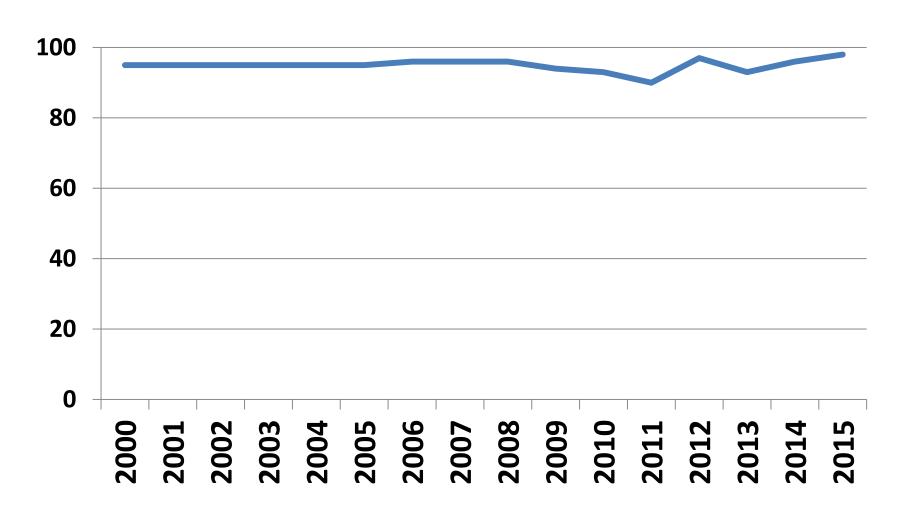
UNICEF/WHO, 2016


Why?

- GAVI does not support monovalent hep B vaccine
- Importance of HBV PMTCT has been poorly recognized
- Logistical challenges where the majority of women deliver their children at home

Kramvis A & Clements CJ, Vaccine, 2010 Shimakawa Y et al., BMC Public Health, 2014 Shimakawa Y et al., Gut, 2016

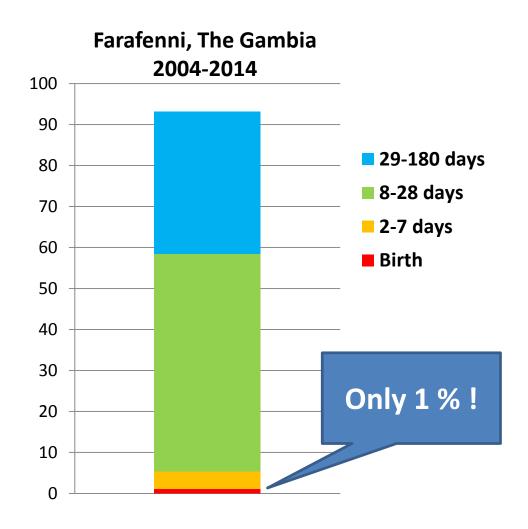
MTCT in sub-Saharan Africa HBV > HIV


 Estimated number of infants infected in sub-Saharan Africa each year

Keane E, Funk AL, Shimakawa Y, Aliment Pharmacol Ther, 2016

BARRIERS TO TIMELY ADMINISTRATION OF BIRTH DOSE

Birth dose vaccine coverage The Gambia (WHO/UNICEF)



Barriers to timely administration of birth dose vaccines in The Gambia, West Africa

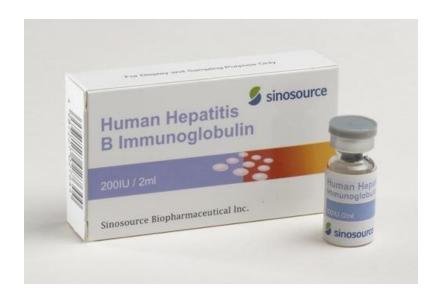
Vaccine 34 (2016) 3335–3341

Reiko Miyahara a,b,c, Momodou Jasseh a, Pierre Gomez a, Yusuke Shimakawa d,

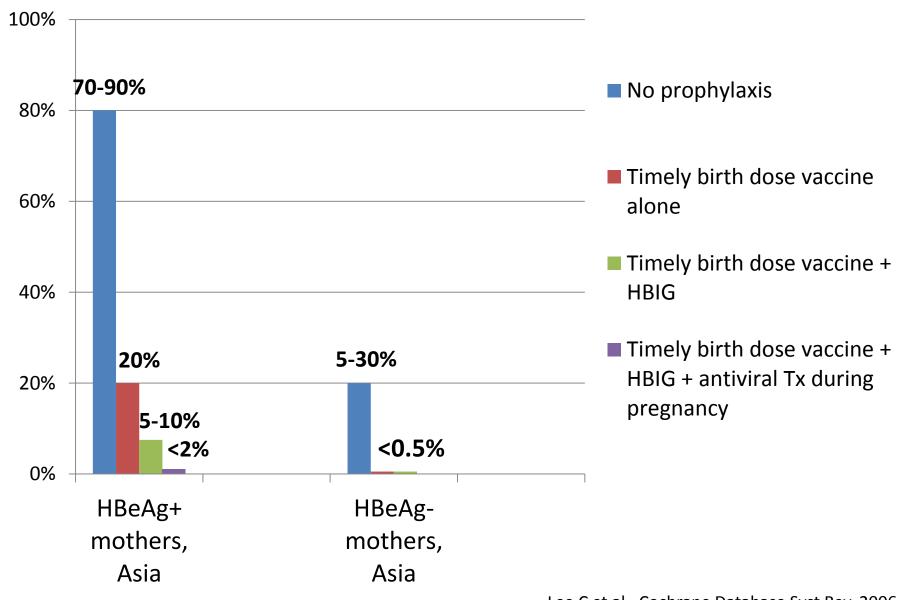
- Only 1% are vaccinated at birth
 - Home birth 1.3%
 - Facility birth 0.6%

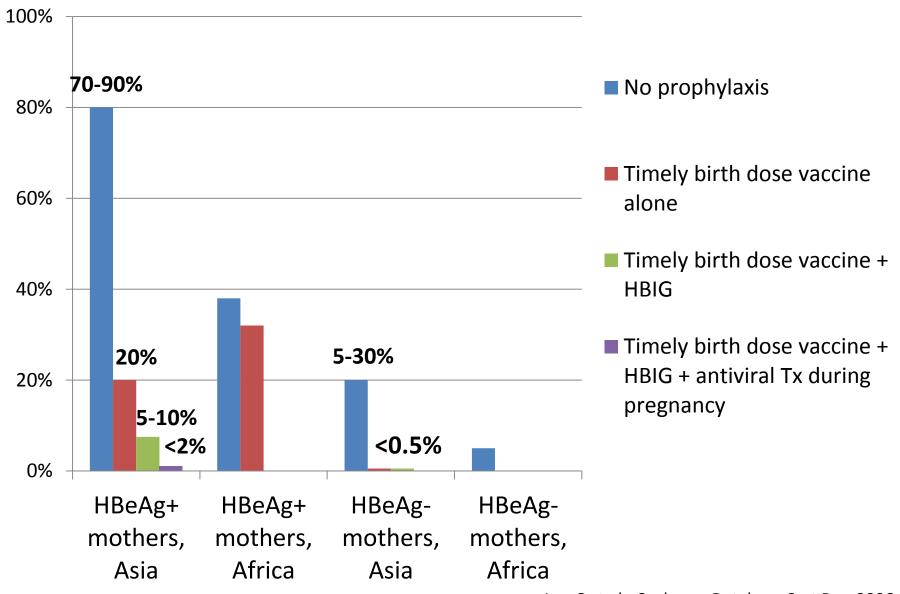
Low coverage even in facility-birth

- Hospital
 - No hep B vaccine (as there is no EPI team)
- Health Centers
 - There are vaccines, but no communication between maternity staff & EPI staff (two vertical programs)
- Reluctance of EPI staff to open multi-dose vial (10 doses/vial)
 - Although opened vial can be used for 28 days under the cold chain

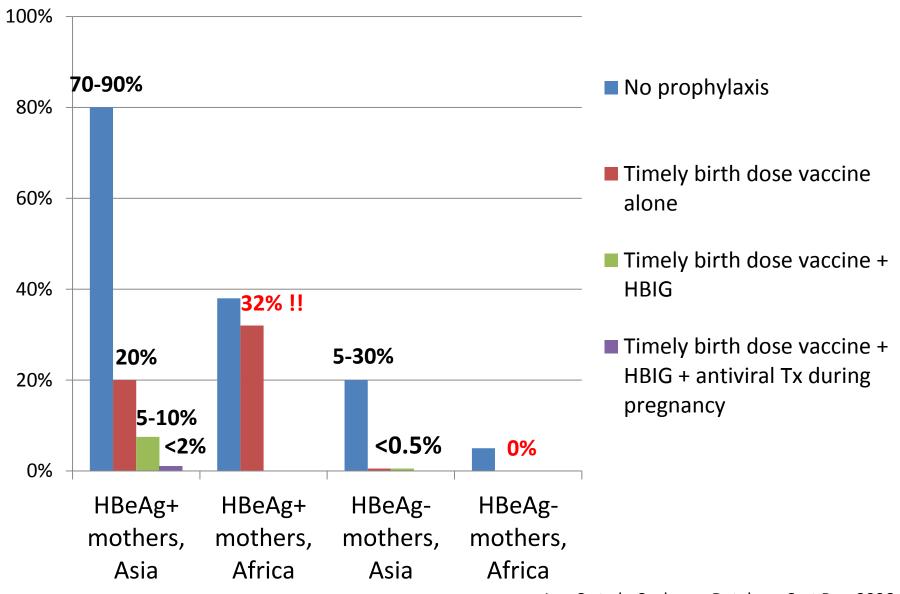

NéoVac

Neonatal Vaccination Against Hepatitis B in Africa


- To develop and evaluate a community-based intervention to improve the coverage of:
 - A timely birth dose of Hep B vaccine
 - Neonatal care practices that can improve child survival
- Senegal / Burkina Faso / Madagascar



OTHER PREVENTIVE MEASURES



Lee C et al., Cochrane Database Syst Rev, 2006 Machaira M et al., J Antimicrob Chemother, 2015 Pan CQ et al., New Engl J Med, 2016 Keane E, Funk AL, Shimakawa Y. Aliment Pharamacol Ther, 2016

Lee C et al., Cochrane Database Syst Rev, 2006 Machaira M et al., J Antimicrob Chemother, 2015 Pan CQ et al., New Engl J Med, 2016 Keane E, Funk AL, Shimakawa Y. Aliment Pharamacol Ther, 2016

Lee C et al., Cochrane Database Syst Rev, 2006 Machaira M et al., J Antimicrob Chemother, 2015 Pan CQ et al., New Engl J Med, 2016 Keane E, Funk AL, Shimakawa Y. Aliment Pharamacol Ther, 2016

Need for additional preventive measures

- Hepatitis B immunoglobulin (HBIG)
 - Not practical in Africa
 - Cost / limited supply / safety
- Antiviral treatment during pregnancy
 - Atractive for Africa
 - % women delivering baby at health facilities: 50%
 - % women attending at least one ANC: 78%
 - Generalizability of Asian studies to African context
 - BD + HBIG + Antiviral Tx

Conclusions

- MTCT is less frequent in Africa than in Asia
- But, MTCT is responsible for 2/3 of HBV-related liver disease in Africa
- Birth dose vaccine is not well implemented
- Additional intervention may be necessary for those born to HBeAg(+) mothers
- Need for African model?
 - Antiviral Tx + birth dose vaccine
 - Antiviral Tx alone (without birth dose vaccine)

Thank you

- MRC Unit, The Gambia
 - Dr. Ramou Njie
 - Dr. Harr Njie
 - Dr. Gibril Ndow
 - Prof. Umberto D'Alessandro
- Imperial College, London
 - Dr. Maud Lemoine
 - Dr. Shevanthi Nayagam
 - Prof. Mark Thursz
- LSHTM
 - Dr. Christian Bottomley
 - Prof. Hilton Whittle
 - Sir Andrew Hall
- IARC/GHIS
 - Dr. Maimuna Mendy
- Inserm
 - Dr. Isabelle Chemin
- Gambia Government
 - Dr. Makie Taal
 - Mr. Bakary Sanneh

- Institut Pasteur, Paris
 - Dr. Tamara Giles-Vernick
 - Dr. Elizabeth Keane
 - Ms. Anna Funk
 - Prof. Arnaud Fontanet
- Institut Pasteur de Dakar
 - Dr. Muriel Vray
- IRD, Dakar
 - Dr. Cheikh Sokhna
 - Dr. Aldiouma Diallo
 - Dr El-Hadji Ba
- LAMIVAC (AMP & Centre Muraz)
 - Dr. Edouard Betsem
 - Dr. Espérence Ouedraogo
 - Prof. Nicholas Meda
- Institut Pasteur de Madagascar
 - Dr. Soa Fy Andriamandimby
 - Dr. Rila Ratovoson
 - Dr. Dolorès Pourette
- European Union
- Total Foundation