Chronic viral hepatitis and liver disease in Belgium

Pierre Deltenre

Brussels, November 7, 2017

Hepatitis B and C in Belgium What we need to know

- 1. Who is at risk of infection?
- 2. What is the natural history?
- 3. What are the risk factors for disease progression and which risk factors can we correct?
 - 4. How we can reduce mortality related to viral hepatitis?

WHO IS AT RISK OF INFECTION?

Hepatitis B virus and hepatitis C virus infections in Belgium: similarities and differences in epidemics and initial management

Bénédicte De Vroey^a, Christophe Moreno^b, Wim Laleman^h, Marc van Gossum^c, Isabelle Colleⁱ, Chantal de Galocsy^d, Philippe Langlet^e, Geert Robaeys^j, Hans Orlent^k, Peter Michielsen^l, Jean Delwaide^m, Hendrik Reynaert^f, François D'Heygereⁿ, Dirk Sprengers^o, Stefan Bourgeois^p, Collins Assene^g, Bertrand Vos^q, Réginald Brenard^r, Michael Adler^b, Jean Henrion^a and Pierre Deltenre^a

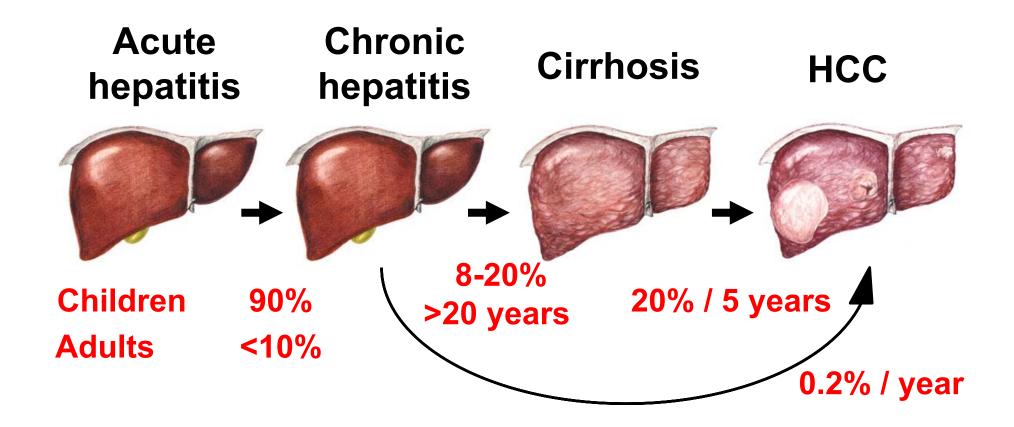
387 newly diagnosed HBV infections – 268 newly diagnosed HCV infections

	HBsAg-positive patients (n=387)	HCV patients with detectable HCV RNA (n=268)	P-value
Age (years) ^a	36 (34-37)	45 (43–46)	< 0.0001
Sex ratio (male/female) [n (%)] Origin [n (%)]	266/121 (69/31)	150/118 (56/44)	0.0008
Known White	386 (100) 165 (43)	252 (94) 214 (85)	<0.0001
Black African Asia	123 (32) 44 (11)	25 (10) 1 (0.4)	
Maghreb	52 (13)	8 (3)	
Other Unknown Risk factor for infection [n (%)]	1 (0)	4 (1.6) 16 (6)	
Known	139 (36)	196 (73)	< 0.0001
Transfusion Intravenous drug use	12 (9) 8 (6)	66 (34) 86 (44)	
Surgery Sexual transmission	4 (3) 56 (40)	14 (7) 2 (1)	
Familial transmission Other	42 (30)	1 (0.5) 27 (14)	
Unknown	17 (12) 248 (64)	72 (27)	

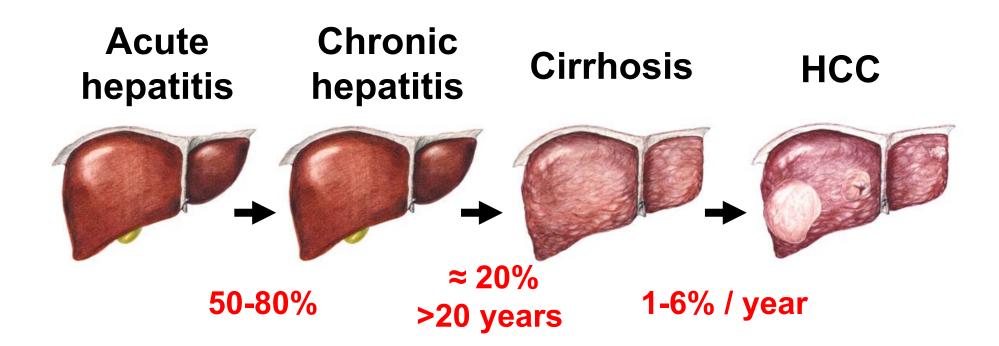
De Vroey B, et al. EJGH 2013;25:613-19

Hepatitis B virus and hepatitis C virus infections in Belgium: similarities and differences in epidemics and initial management

Bénédicte De Vroey^a, Christophe Moreno^b, Wim Laleman^h, Marc van Gossum^c, Isabelle Colleⁱ, Chantal de Galocsy^d, Philippe Langlet^e, Geert Robaeys^j, Hans Orlent^k, Peter Michielsen^l, Jean Delwaide^m, Hendrik Reynaert^f, François D'Heygereⁿ, Dirk Sprengers^o, Stefan Bourgeois^p, Collins Assene^g, Bertrand Vos^q, Réginald Brenard^r, Michael Adler^b, Jean Henrion^a and Pierre Deltenre^a


387 newly diagnosed HBV infections – 268 newly diagnosed HCV infections

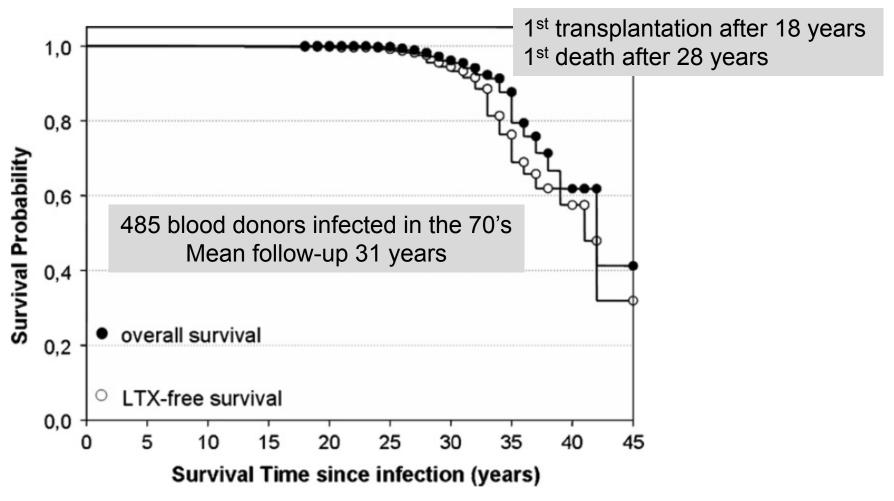
	HBsAg-positive patients (n=387)	HCV patients with detectable HCV RNA (n=268)	P-value
Age (years) ^a	36 (34–37)	45 (43–46)	<0.0001
Sex ratio (male/female) [n (%)]	266/121 (69/31)	150/118 (56/44)	0.0008
Origin [n (%)]			
Known	386 (100)	252 (94)	< 0.0001
White	165 (43)	214 (85)	
Black African	123 (32)	25 (10)	
Asia	44 (11)	1 (0.4)	
Maghreb	52 (13)	8 (3)	
Other	2 (1)	4 (1.6)	
Unknown	1 (0)	16 (6)	
Risk factor for infection [n (%)]			
Known	139 (36)	100 (70)	< 0.0001
Transfusion	12 (9)	66 (34)	
Intravenous drug use	8 (6)	86 (44)	
Surgery	4 (3)	14 (7)	
Sexual transmission	56 (40)	2 (1)	
Familial transmission	42 (30)	1 (0.5)	
Other	17 (12)	27 (14)	
Unknown	248 (64)	72 (27)	


De Vroey B, et al. EJGH 2013;25:613-19

WHAT IS THE NATURAL HISTORY?

HBV infection

HCV infection



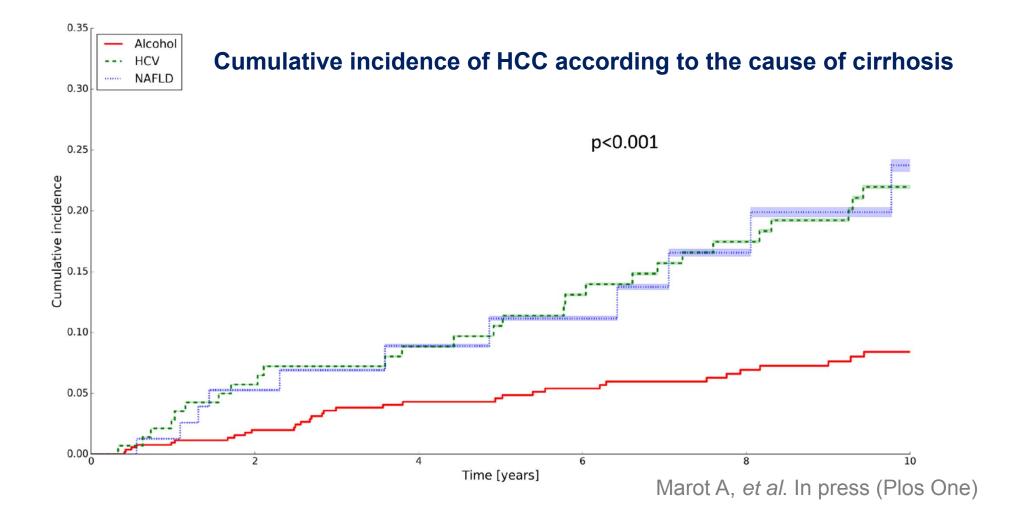
EASL Clinical Practice Guideline. J Hepatol 2011;55:245-264 AASLD Practice Guideline. Ghany M, *et al.* Hepatology 2011;54:1527-1537

	Hepatitis B	Hepatitis C	HBV and HCV co-infection
Number of patients	39109	75834	2604
Follow-up (years)	5.3	4.6	3.5
Mortality rate *	1.4	3.1	5.6
Liver-related mortality rate *	12.2	16.8	32.9
HCC-related mortality rate *	27.8	16.7	39.7

^{*} Compared to mortality rate in the general population

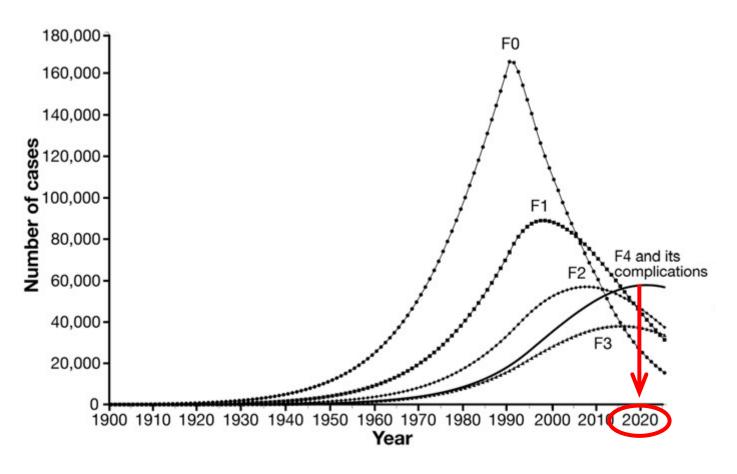
Natural history HCV infection

Risk factors for HCC


GEOGRAPHICAL DISTRIBUTION OF MAIN RISK FACTORS FOR HCC WORLDWIDE

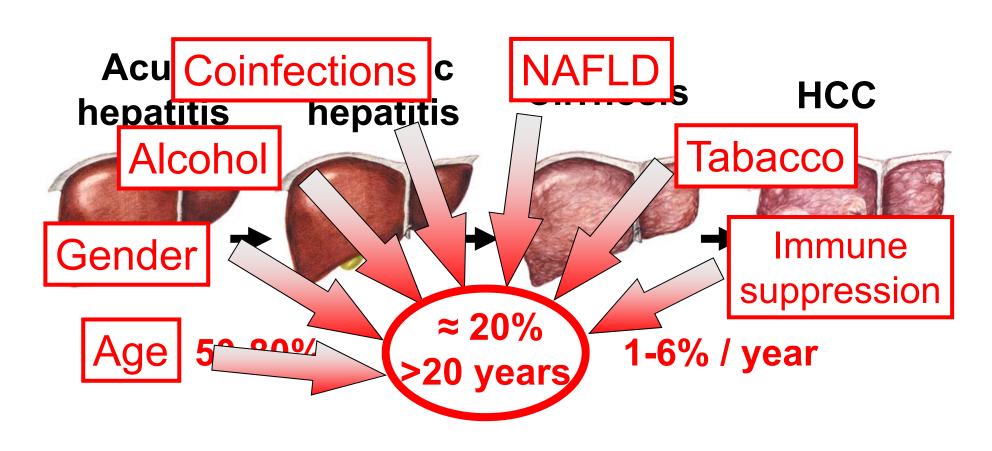
Geographic area	AAIR	Risk factors		Alcohol	Others
	M/F	HCV (%)	HBV (%)	(%)	(%)
Europe	6.7/2.3	60-70	10-15	20	10
Southern	10.5/3.3				
Northern	4.1/1.8				
North America	6.8/2.3	50-60	20	20	10 (NASH)
Asia and Africa		20	70	10	10 (Aflatoxin)
Asia	21.6/8.2				
China	23/9.6				
Japan	20.5/7.8	70	10-20	10	10
Africa	1.6/5.3				
WORLD	16/6	31	54	15	

EASL Guidelines. J Hepatol 2012;56:908-43

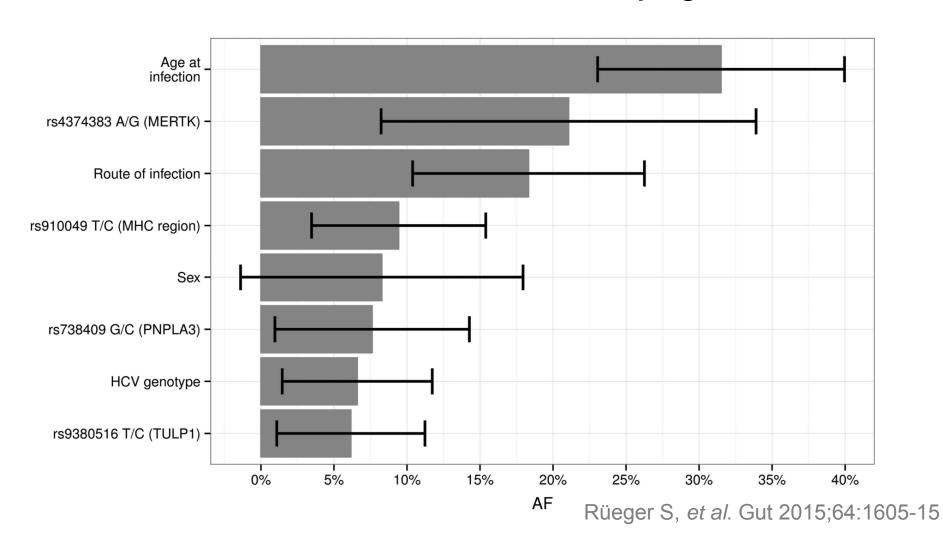

Alcoholic liver disease confers a worse prognosis than HCV infection and non-alcoholic fatty liver disease among patients with cirrhosis: An observational study

Astrid Marot¹, Jean Henrion², Jean-François Knebel^{3,4}, Christophe Moreno⁵, Pierre Deltenre^{1,5} *

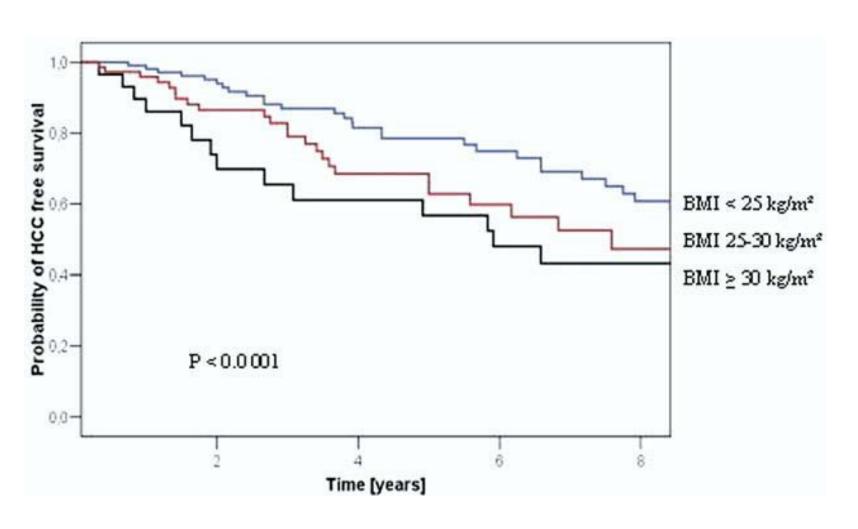
Dynamics of HCV infection


DISTRIBUTION OF FIBROSIS STAGES IN THE ABSENCE OF TREATMENT IN FRANCE

Deuffic-Burban S, Deltenre P, et al. Gastroenterology 2012;143:974-985 e914

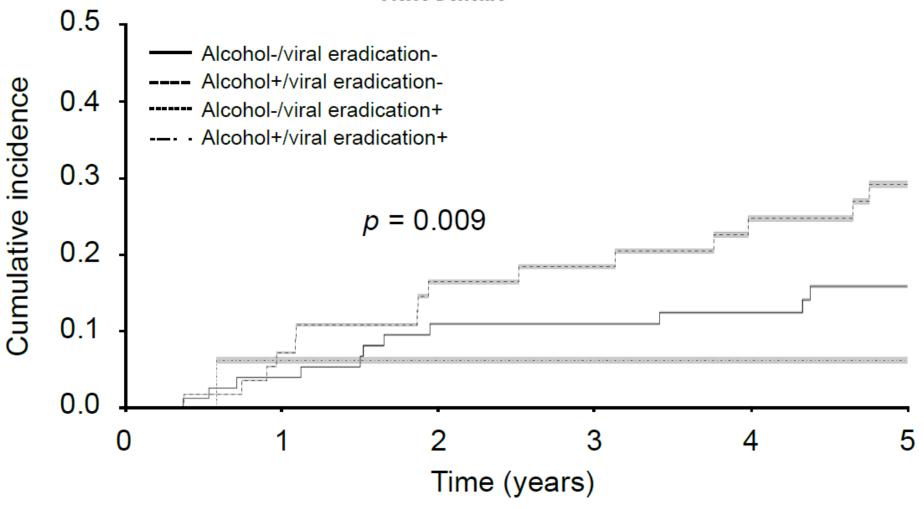

WHAT ARE THE RISK FACTORS FOR DISEASE PROGRESSION AND WHICH RISK FACTORS CAN WE CORRECT?

Natural history HCV infection



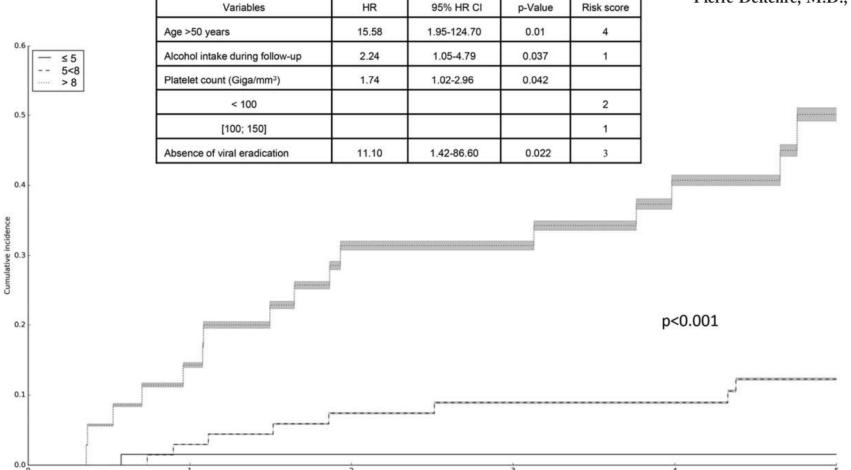
Most factors accelerating liver fibrosis progression in chronic hepatitis C are non modifiable

Attributable fraction of risk for accelerated progression rate


Risk of HCC according to metabolic factors

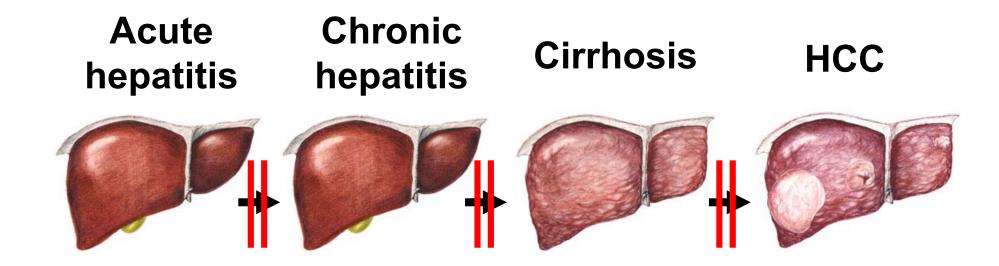
Alcohol intake increases the risk of HCC in hepatitis C virus-related compensated cirrhosis: A prospective study

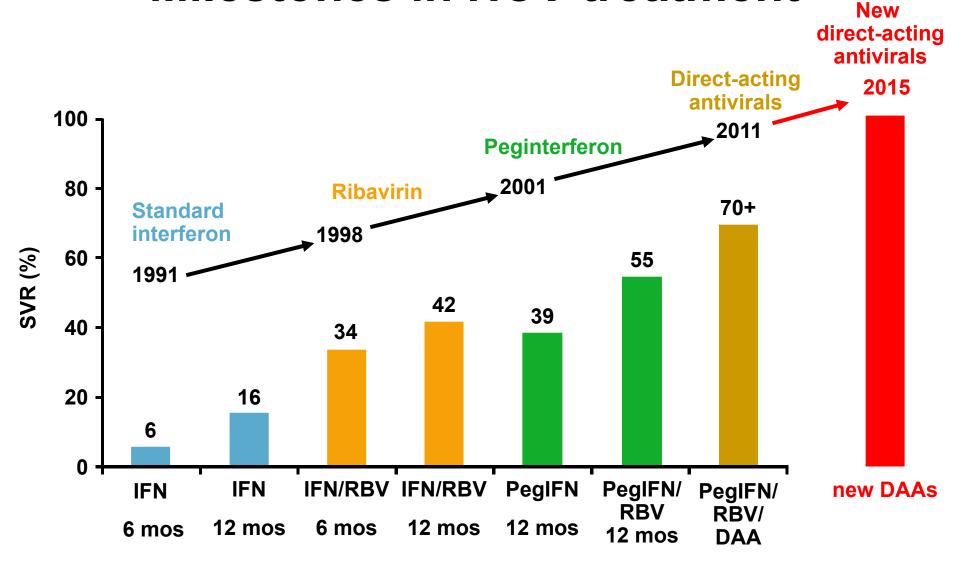
Hélène Vandenbulcke¹, Christophe Moreno², Isabelle Colle³, Jean-François Knebel^{4,5}, Sven Francque⁶, Thomas Sersté⁷, Christophe George⁸, Chantal de Galocsy⁹, Wim Laleman¹⁰, Jean Delwaide¹¹, Hans Orlent¹², Luc Lasser¹³, Eric Trépo², Hans Van Vlierberghe³, Peter Michielsen⁶, Marc van Gossum⁷, Marie de Vos¹, Astrid Marot¹⁴, Christopher Doerig¹⁴, Jean Henrion¹, Pierre Deltenre^{2,14,*}


Vandenbulcke H, et al. J Hepatol 2016;65:543-61

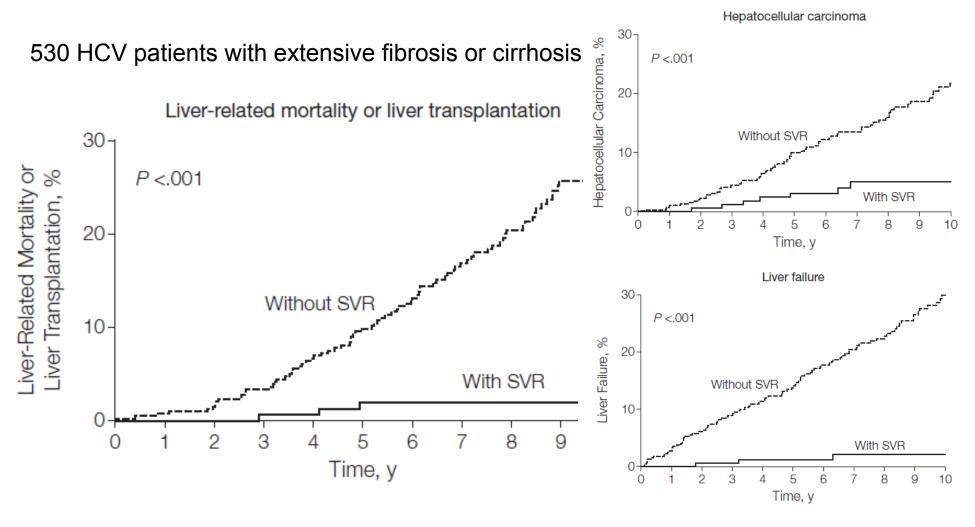
HEPATOLOGY

External Validation of the Nomogram for Individualized Prediction of Hepatocellular Carcinoma Occurrence in Patients With Hepatitis C Virus-Related Compensated Cirrhosis


Astrid Marot, M.D.¹
Hélène Vandenbulcke, M.D.²
Jean-François Knebel, M.D.^{3,4}
Christopher Doerig, M.D.¹
Christophe Moreno, M.D., Ph.D.⁵
Pierre Deltenre, M.D., Ph.D.^{1,5}

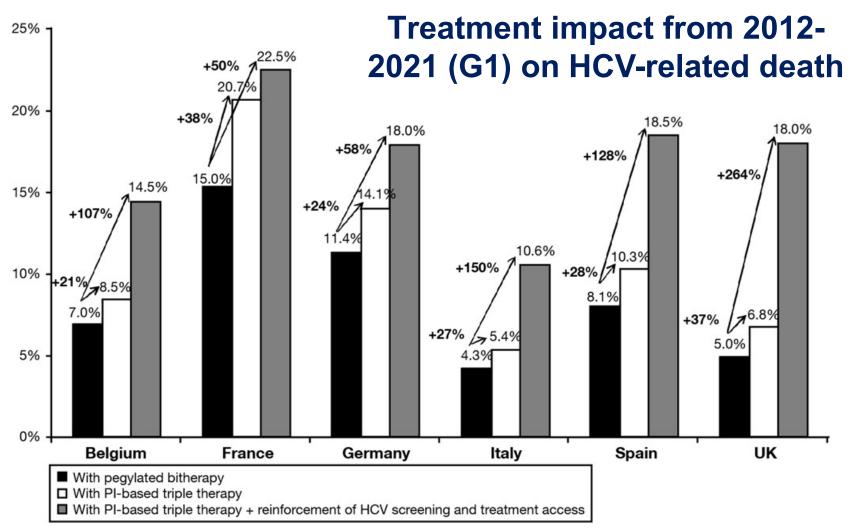

HOW WE CAN REDUCE MORTALITY RELATED TO VIRAL HEPATITIS?

1. CONTROLLING OR CURING THE INFECTION


ANTIVIRAL TREATMENT

Milestones in HCV treatment

SVR is the only way to increase survival of HCV patients



HOW WE CAN REDUCE MORTALITY RELATED TO VIRAL HEPATITIS?

2. TREATING MORE PEOPLE
THE EXAMPLE OF HCV INFECTION

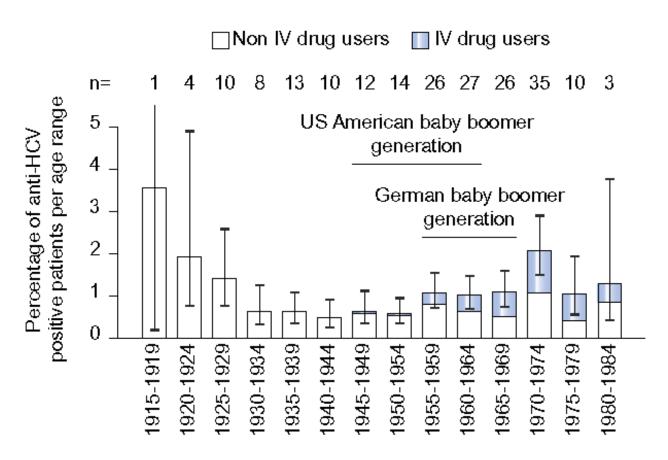
Predicted Effects of Treatment for HCV Infection Vary Among European Countries

SYLVIE DEUFFIC-BURBAN,*,* PIERRE DELTENRE,\$, MARIA BUTI, TOMMASO STROFFOLINI,# JULIE PARKES,** NIKOLAI MÜHLBERGER,** UWE SIEBERT,**,\$, CHRISTOPHE MORENO, ANGELOS HATZAKIS,** WILLIAM ROSENBERG,*** STEFAN ZEUZEM,** and PHILIPPE MATHURIN,\$,\$,

Deuffic-Burban S, Deltenre P, et al. Gastroenterology 2012;143:974-985 e914

Screening strategies

Screening strategies have a deep impact on HCV-related mortality


→ We definitely need new screening strategies able to increase the number treated patients

August 17, 2012

Recommendations for the Identification of Chronic Hepatitis C Virus Infection Among Persons Born During 1945–1965

- Persons born between 1945 and 1965 account for ¾ of all HCV infections in the US
- 11% HCV Ab pos in a recent survey performed in 1287 individuals

However...

"Check-Up 35+": 21,008 patients, 51 primary care private practices
Selection bias: patients had to consult a primary care physician in order to have a chance of being included

However...

Birth Cohort Screening for Chronic Hepatitis During Colonoscopy Appointments

Dawn M. Sears, MD^{1,2}, Dan C. Cohen, MD^{1,2}, Kimberly Ackerman, DO^{1,2}, Jessica E. Ma^{1,2} and Juhee Song, PhD^{1,2}

OBJECTIVES: More than 70% of infections with hepatitis C viruses (HCV) occur among people born between 1945

and 1965 (baby boomers). The US Centers for Disease Control estimate that 70% of people with chronic hepatitis are not aware that they are infected with a virus. We performed a prospective trial to determine whether people born during this time period would accept testing for chronic viral infection (hepatitis B virus (HBV) and HCV) during routine colonoscopies. We also evaluated

acceptance and efficacy of screening for immunity to hepatitis A (HAV) and B viruses.

METHODS: During a 3-month period, 500 people, 50–65 years old, who received a colonoscopy were offered a

test for viral hepatitis. Patients answered questions about vaccination, exposure, diagnoses, and risk factors related to viral hepatitis, and blood samples were collected. Patients who tested positive for antibodies to HCV or hepatitis B surface antigen (HBsAg) were contacted for further testing and

possible therapy. Patients without immunity to HAV or HBV were offered vaccinations.

RESULTS: Three hundred and seventy-six people (158 men) agreed to be tested. Four were found to have anti-

bodies against HCV and one had detectable virus. None of the patients tested positive for HBsAg;

136 (36%) had at least one risk factor for chronic hepatitis and 31 (8%) had multiple risk factors.

Three hundred and fifteen patients (84%) were not immune to HAV, HBV, or both viruses.

CONCLUSIONS: It is possible to screen patients for viral hepatitis during visits for routine colonoscopy. This approach

can identify individuals with undiagnosed chronic HBV and HCV infections who could benefit from

education, vaccination, or therapy.

Large-scale screening is not useful to identify individuals with hepatitis B or C virus infection: Results of an Interim Analysis

Astrid Marot^{1*}, Aicha Trabelsi^{1*}, Cyril André², Pierre Deltenre^{1,3}

¹ Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland, ² Division of immunology and allergology, Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse, ³ Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (* Equal contribution)

PREVALENCE

	Whole cohort (n=1345)	Anti-HCV negative (n=1256)	Anti-HCV positive (n=5)	0.4% p-Value
Age (years) *	44 (43-45) *	44 (43-45) *	49 (39-54) **	0.14
Gender (n of male, %)	678/1345 (50%)	632/1256 (50%)	3/5 (60%)	0.7
Swiss patients	900/1318 (68%)	848/1233 (69%)	4/5 (80%)	0.6
Previous screening for HBV infection	256/1275 (20%)	241/1193 (20%)	4/5 (80%)	< 0.001
Previous vaccination for HBV infection	378/992 (38%)	356/931 (38%)	2/4 (50%)	0.6
Previous screening for HCV infection	146/1188 (12%)	133/1112 (12%)	5/5 (100%)	< 0.001
Risk factors for infection (n, %)				
Intravenous drug use	6/1268 (0.5%)	2/1184 (0.2%)	4/5 (80%)	< 0.001
Nasal drug use	82/1240 (6.6%)	74/1160 (6.4%)	4/5 (80%)	< 0.001
Cannabis use	93/1271 (7.3%)	87/1186 (7.3%)	4/5 (80%)	< 0.001

^{*} Data expressed in median (95% CI) ** Data expressed as range

Large-scale screening is not useful to identify individuals with hepatitis B or C virus infection: Results of an Interim Analysis

Astrid Marot^{1*}, Aicha Trabelsi^{1*}, Cyril André², Pierre Deltenre^{1,3}

¹ Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland, ² Division of immunology and allergology, Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse, ³ Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (* Equal contribution)

Already screened n=5 At least one significant risk factor * n=4

- * Risk factors considered as significant
- Transfusion before 1992 (n=0)
- Intravenous drug use (n=4)
- Intranasal drug use (n=4)
- Tattoo or piercing with non-sterile material (n=0)

NB. Patients underlined in yellow had detectable HCV RNA

Conclusions

What we need to know when a patient has viral hepatitis B or C

- HBV and HCV chronic infections kill people --don't underestimate the risk
- 2. Pay attention to avoidable risk factors
- 3. Available treatments highly effective --- should be used in any case at risk of disease progression
- 4. Find undiagnosed infected people --- effective screening strategies still need to be defined