A model-based approach to optimizing short rotation forestry management.

Toon De Groote

Research Group of Plant and Vegetation Ecology – Universiteit Antwerpen Universiteitsplein 1, 2610 Wilrijk, Belgium

Step 1: modify an existing model for SRC simulation						
Man • Peri • Irrig • Star	agement odic harvests ation t with cuttings	 Growth # of stems increases after harvest fine root mortality decoupled from leaf mortality 		 Allocation No flowers No AB heartwood High allocation to leaves No root growth after harvest 		 Parameterization Allometric relations Vcmax & Jmax
Step 2: Evaluate the model performance $75_{R^2=0.78}$						
eground standing biomass (ton ha ⁻¹) 30 4 + × = 0	simulated TxB TxD T DxN DxT N	The simulated standing aboveground woody biomass (a) for the Boom		$\frac{1}{25} = \frac{1}{20} $	A 1 wee prir	-to-1 comparison of ekly averages of gross nary production (GPP),

biomass (a) for the Boom site and (b) for the POPFULL site. The black line is the simulated biomass. The symbols are the different parentages of the poplars at that site and the green area is the range of measured biomasses.

ecosystem respiration (R_{eco}) and latent heat (LE) for the POPFULL site, between the model outputs and the measured values. The dotted line is the 1:1 line.

