

Universiteit Antwerpen

Fluxes of CO₂, CH₄ and N₂O in a short-rotation poplar plantation after conversion from agricultural land <u>Terenzio Zenone^a, Nicola Arriga^a, Donatella Zona^b and Reinhart Ceulemans^a</u>

^aDepartment of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Belgium. ^bDepartment of Animal and Plant Sciences. University of Sheffield. United Kingdom.

Introduction

Monitoring the exchange of greenhouse gases (GHG) between short-rotation coppice (SRC) plantations and the atmosphere is crucial to quantify their carbon sequestration potential.

We report on the greenhouse gas fluxes (CO₂, CH₄, and N₂O) measured using eddy covariance in a SRC poplar plantation located in Lochristi, Flanders (Belgium).

The site is a multi-clonal SRC planted in April, 2010 in a double

row design with a density of 8000 plants ha⁻¹.

2.0

1.5

1.0

0.5

0.0

-2 -1 m s

ug N₂0

Fig. 1 Aerial view of the eddy covariance tower to monitor the GHG exchanges

Results

Fig. 2. Daily trend based on monthly averaged CO₂ fluxes (panel A), VPD (panel B) and surface canopy conductance (panel C)

Over the three years we observed a constant increase of the daily CO₂ uptake particularly in July and August.

CO₂ uptake occurred mainly during the morning (panel A) with a maximum uptake around 12:00 (local standard time) in July and August.

The rapid decrease in the afternoon is mainly associated with a constant increase of the VPD until 16:00 (Fig. 3, panel B) and a decrease of the surface canopy conductance (panel C).

One-way ANOVA indicated that there was a significant difference of the surface canopy conductance values in 2012 as compared to 2010 and 2011 F (2,290) = 117 p< 0.05 while the difference was not significant between 2010 and 2011 (p> 0.05).

Fig. 3. Temporal dynamics of the N₂O emission.

Fig. 4. Temporal dynamics of the half-hourly CH₄ fluxes (A) and relationship with water table depth (B): displayed are monthly averages and standard errors for the water table, and monthly averages and propagated errors for the CH₄ fluxes.

 N_2O fluxes did not present a well-defined diurnal pattern (panel A), with the exception of a few periods (panel B).

In 2010 the first large rainfall event after a prolonged dry period abruptly increased the water table (panel C), leading to a steep increase in N_2O emission from the plantation.

The total N₂O–N emitted during just a week was about 2.7 kg N₂O–N ha⁻¹, and it was 3.1 kg N₂O–N ha⁻¹ for the entire month of August 2010

Conclusions

- GHG balance after the 1st rotation (and after the first year of the 2nd) appears to be a C source.
- No clear daily or seasonal dynamics were identified for CH₄ and N₂0 fluxes.
- Next steps : (i) to quantify the C offset that can be achieved by producing 2nd generation biofuels heat and electricity; (ii) to quantify total energy and GHG balance of two entire rotations.
- Final objective of the project will be to provide practical recommendations to the policy makers on how to implement large-scale bioenergy poplar plantations.

For information please contact: Terenzio Zenone. Terenzio.Zenone@uantwerpen.be Reinhart Ceulemans. Reinhart.Ceulemans@uantwerpen.be

Acknowledgements

Funding from ERC grant agreement (# 233366) POPFULL under the EC 7th Framework Programme (FP7/2007-2013). Further funding from the Flemish Hercules Foundation as Infrastructure contract # ZW09-06 and from the Methusalem Program of the Flemish

