POPFULL Full greenhouse gas balance of a bio-energy plantation

D. Zona¹, J. Cools¹, A. Zaldei², and R. Ceulemans¹

¹Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Belgium ²National Research Council (CNR), Biometeorology Institute, Firenze, Italy

>The research project we just started in Flanders (Belgium; POPFULL) will provide a full accounting of the greenhouse gas balance and energy production of a 18.4 ha short rotation coppice (SRC) plantation of fast-growing poplar and willow.

>The goal of this project is to test the potential of SRC plantations to sequester CO_2 from the atmosphere and also investigate the emission/uptake of the other most important greenhouse gases (H₂O, CH₄, N₂O, O₃) from the plantation and their environmental controls.

Fig. 1 Eddy covariance tower (left) in the experimental plantation in September 2010.

We installed a meteorological and eddy flux tower in March-April 2010 and are currently measuring:

A complete suite of environmental variables (water table, soil moisture, soil and air temperature, solar and thermal radiation, diffuse radiation, soil heat flux, etc.)

>CO₂,H₂O, CH₄, N₂O, and O₃ fluxes from the plantation with eddy covariance

Within the framework of the POPFULL project we are also quantifying the complete energy balance and the full economic balance in line with a full life cycle assessment.

Below are shown some of the preliminary results from the first season. The fluxes are dominated by CO_2 and N_2O (CO_2 sink and a N_2O source). The CH_4 , fluxes show very low values (data not shown), probably for the sandy soil usually dry on the surface. The emission of N_2O follows the drop in water table (Fig. 2). When the soil dries out further the plantation presents a N_2O sink. The plantation is also a sink for O_3 (Fig. 3).

Fig. 2 Water table (a), NEE (b), and N₂O fluxes (c) for the plantation during part of the month of August 2010. Notice the increase in N₂O emission after water table drop on the 19 to the 26 of August.

Fig. 3 O_3 fluxes from the plantation on 10-13 September 2010

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013), ERC grant agreement nr. 233366 (POPFULL) and the Marie Curie Reintegration grants (PIRG07-GA-2010-268257). We thank Kristof Mouton for logistic support at and management of the field site." (PIRG07-GA-2010-268257). We thank all the Ph.D and post-doctoral students and that helped in the project, especially Laura, Melanie, Sylvestre, and Ouafik.